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The contribution to an organism’s phenotype from one genetic locus may depend upon the status of other loci. Such epistatic

interactions among loci are now recognized as fundamental to shaping the process of adaptation in evolving populations. Although

little is known about the structure of epistasis in most organisms, recent experiments with bacterial populations have concluded

that antagonistic interactions abound and tend to deaccelerate the pace of adaptation over time. Here, we use the NK model of

fitness landscapes to examine how natural selection biases the mutations that substitute during evolution based on their epistatic

interactions. We find that, even when beneficial mutations are rare, these biases are strong and change substantially throughout

the course of adaptation. In particular, epistasis is less prevalent than the neutral expectation early in adaptation and much more

prevalent later, with a concomitant shift from predominantly antagonistic interactions early in adaptation to synergistic and sign

epistasis later in adaptation. We observe the same patterns when reanalyzing data from a recent microbial evolution experiment.

These results show that when the order of substitutions is not known, standard methods of analysis may suggest that epistasis

retards adaptation when in fact it accelerates it.
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Two sites in a genome interact epistatically when the contri-

bution to a trait at one site depends on the state of the other

site. Although epistasis has been a significant theme in top-

ics such as the evolution of sex and robustness to mutation,

its role in the dynamics of evolving populations has only be-

gun to be explored. Recent experimental evolution studies of mi-

crobes (Blount et al. 2008; Chou et al. 2011; Khan et al. 2011;

Woods et al. 2011) and biomolecules (Reetz and Sanchis 2008;

Bloom and Arnold 2009; Hayden et al. 2011; Salverda et al. 2011)

have revealed that epistasis is widespread and consequential for

adaptation. These studies, combined with experiments that re-

construct ancestral genotypes (Weinreich et al. 2006; Bridgham

et al. 2009; Lozovsky et al. 2009; Bloom et al. 2010; Lunzer

et al. 2010; Novais et al. 2010; Martı́nez et al. 2011) or exam-

ine numerous combinations of adaptive mutations (Remold and

Lenski 2004; Trindade et al. 2009; Kvitek and Sherlock 2011;

Rokyta et al. 2011; Szendro et al. 2013), have amply demon-

strated that molecular evolution cannot be explained or predicted

without understanding how gene interactions shape adaptive

possibilities.

These kinds of evolution experiments may seem especially

informative because they quantify the epistatic interactions among

the rare, beneficial changes that drive adaptation. However, these

data reveal the interactions only among the sets of mutations

that happened to substitute in the population, which may pro-

vide a different picture of epistasis than would sets of mutations
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that did not co-occur (Szendro et al. 2013). These potential bi-

ases highlight the limitations of our current understanding of how

epistasis influences adaptation. Measuring epistatic interactions

among alleles may help us to account for the outcome of a single

experiment, but how can we use these data to predict the behav-

ior of replicate experiments, or to predict adaptation in a larger

population or in one with a different mutation rate? If selection

and other evolutionary forces were blind to epistasis—that is, if

interactions among sites did not systematically influence the like-

lihood that they would substitute in an evolving population—then

the genetic changes we see in evolution experiments would per-

fectly mirror the epistatic properties of the underlying adaptive

landscapes. If, however, evolution is biased toward the fixation of

groups of alleles with specific patterns of interactions, then evo-

lution experiments present a complex problem: if epistasis shapes

evolution, and evolution distorts the appearance of epistasis, then

how can we use evolution experiments to infer the underlying

fitness landscape? This ambiguity complicates even qualitative

inferences such as whether interactions among genes can be said

to have slowed or hastened adaptation. To resolve this ambigu-

ity, researchers must first understand how evolution biases the

combinations of sites that substitute in an adapting population.

Only then can researchers hope to correct for these biases, which

will depend upon the size, mutation rate, and other characteristics

of the population, to infer the underlying fitness landscape from

experimental data.

Many theoretical studies of epistasis and patterns of asexual

adaptation have focused on questions of the existence and ac-

cessibility of multiple fitness peaks (Kauffman 1993; Whitlock

et al. 1995; Weinreich and Chao 2005; Cowperthwaite et al. 2006;

Weissman et al. 2009; Carneiro and Hartl 2010; Dawid et al. 2010;

Franke et al. 2011; Østman et al. 2012). Although such work has

clarified the broad-scale picture of how epistasis shapes adap-

tation, its usefulness in predicting microevolutionary dynamics

is limited. In contrast, our interest here is how experiments on

adapting populations can be used to infer the properties of an

organism’s underlying fitness landscape and how epistasis shapes

those experimental outcomes.

We use a computational model to clarify the evolutionary ef-

fects of two contradictory roles of epistasis: epistatic interactions

can undermine the benefits of previously adaptive genetic sub-

stitutions, but they can also produce new paths to higher fitness

(Draghi et al. 2011; Wagner 2011). The first of these effects would

tend to retard adaptation, and the latter effect would accelerate it.

Our results show that natural selection biases the prevalence and

type of epistatic interactions among the mutations that substitute,

even when mutations are too rare to interact directly as coex-

isting polymorphisms. Here we work to describe how selection

biases the epistasis among mutations that substitute in an adapting

population and to understand why these biases arise.

Methods
MATHEMATICAL FITNESS LANDSCAPES

Invented by Stuart Kauffman to describe rugged fitness land-

scapes (Kauffman and Levin 1987; Kauffman and Weinberger

1989; Kauffman 1993), the NK model produces complex but

computationally tractable genotype-fitness maps using only the

parameters N , K , and A. The parameter N defines the number

of sites, each of which can assume any of A alleles. These sites

can be seen as representing nucleotides or amino acids within a

single gene, or as representing separate genes with multiple al-

leles. The fitness of a genotype is calculated in two steps: first,

the fitness contribution of each site is determined by reference

to a table of precalculated values; second, these fitness contribu-

tions are multiplied together and the Nth root of this product is

taken as fitness. When K is 0, the fitness contribution of a site

depends only on its own allele, and not on the state of other sites;

the lookup table for each site therefore contains only A possible

fitness contributions. When K > 0, the fitness contribution of a

site depends on its own allele as well as the alleles at K other

sites, yielding a lookup table with AK+1 entries. By specifying

that each of the entries in the lookup tables for all N sites are

drawn independently from a broad distribution (in our case the

uniform distribution), the NK model ensures that the fitness effect

of a substitution depends strongly and randomly on some frac-

tion of the genetic background, determined by K . K is constant

across sites and genotypes for a particular landscape, and the K

sites upon which each locus depend are drawn uniformly from

the N − 1 possibilities.

Gene interactions described by the NK model are directional:

the fitness contribution of site i may depend on the state of site

j without implying that the contribution of j also depends on

i . We can therefore categorize relationships between sites: i is

downstream of j if the fitness contribution of i depends on j ,

and j is conversely upstream of i in this example. Although this

direction of influence is significant for some of our results later,

we note a subtle confusion between epistasis as defined in the

NK model, and epistasis as defined by an experimentalist. This

confusion stems from the fact that an experimentalist measures

the fitness effect of a substitution, although the NK model consid-

ers contributions of sites to a total measure of fitness. Therefore,

the fitness effect of a substitution at site i will show epistasis

with site j not only if i is downstream of j , but also if it is up-

stream of j . Similarly, the fitness effect of a substitution at i will

be epistatic with j if both i and j are upstream of some mutual

site k, even if neither i nor j directly influence one another—we

refer to this specifically as an indirect interaction. To minimize

this potential confusion, we follow the empirical definition and

use the term “epistasis” to refer to any case in which the fitness

effect of a substitution at a site depends on the state of some other

site. This usage makes the common assumption that independent
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fitness effects are multiplicative. Choosing a multiplicative scale

for fitness has the advantage that the fixation probability of an

allele is independent of the absolute fitness of the genetic back-

ground. Therefore, if two mutations are not epistatic, then the

fixation of the first does not affect the fixation probability of the

second.

We can easily calculate the probability of each form of epis-

tasis for two sites i and j chosen at random. Later we calculate

pu , the probability that i is upstream of j , pd , the probability that

i is downstream of j , and pi , the probability of an indirect inter-

action. These random expectations are used to establish baseline

frequencies of epistasis for random mutations.

pu = K

N − 1
, (1)

pd = K

N − 1
, (2)

pi = 1 −
(

1 − K

N − 1

K − 1

N − 2

)N−2

. (3)

In addition to NK landscapes, we also explored epistasis and

evolutionary dynamics using RNA folding landscapes, as well as

experimental bacterial data, described later.

EVOLUTIONARY SIMULATIONS

To investigate epistasis among genetic substitutions, we employed

two types of simulations: adaptive walks, which model simplified

fixation dynamics in essentially monomorphic populations, and

individual-based Monte Carlo simulations of populations. In an

adaptive walk the population is represented by a single genotype,

and a mutation to any of the A − 1 alternative alleles at any site

is a candidate substitution. For simplicity, we assume that the

probability of fixation for a mutation is directly proportional to

its selective coefficient, si = wi
w

− 1, where w is the fitness of

the currently fixed genotype and wi the fitness of the mutant i .

Evolution is then a Markov process with transition probabilities

defined by

Pi = si∑
i∈M

si
, (4)

where Mi is the set of all adaptive, one-mutant neighbors of the

current genotype (Gillespie 1984; Orr 2002). This approximation

is accurate for small selective coefficients in large populations and

avoids the need to add an explicit population-size parameter to

this simple model. These walks therefore substitute one mutation

at a time, strictly increasing in fitness until a local maximum is

reached.

We used the Wright–Fisher to describe evolution in polymor-

phic populations: an asexual population of fixed size n reproduces

with discrete generations and selection on fertility. Mutations oc-

cur at Poisson frequencies according to the per-genome rate μ.

Because our goal was to investigate evolutionary dynamics when

nμ = θ is near or greater than 1, we required a method of de-

tecting substitutions that does not depend on independent, well-

demarcated fixation events. We therefore traced the line of descent

from the most common genotype in the final population back to

the initial generation and record changes along this lineage.

To compare our results with empirical data, we performed

two types of regressions on the fitness effects of the first few

substitutions in evolutionary simulations. Following recent ex-

perimental examples (Chou et al. 2011; Khan et al. 2011), we

examined the first five substitutions in a simulation and measured

the fitness effect of each of these substitutions with all combi-

nations of the allele states at the other four sites. The fitness of

each of the 16 genetic backgrounds is taken as the independent

variable, and the fitness effect of the focal substitution as the de-

pendent variable; a separate regression was performed for each of

the five sites, although the resulting five correlation coefficients

are not independent. These analyses were contrasted with a sec-

ond type of regression, in which the ranks of epistatic deviations

of each successive substitution was compared to their order of

substitution. If we consider the first five substitutions, then there

are four epistatic deviations:

e12 = W12 − W1W2, (5)

e123 = W123 − W1W2W3, (6)

e1234 = W1234 − W1W2W3W4, (7)

e12345 = W12345 − W1W2W3W4W5, (8)

where W12, for example, represents the fitness of the genotype

with the first two substitutions, divided by the fitness of the

ancestor. Because these regressions are based on four points,

we use this analysis only to classify epistasis along a walk;

for example, we highlight the significance of walks in which

e12345 > e1234 > e123 > e12 as examples where epistasis consis-

tently leads to greater than expected fitness.

In both cases, we ignore simulations with little epistasis

among the first five substitutions because such data sets had in-

sufficient ranges of values to allow meaningful correlations to

be calculated; our filtering removed about 20% of simulations.

Because we remove walks without regard to the direction of

epistatic effects, this removal should not bias any results.

New landscapes were generated for each replicate simulation.

In both types of populations, a simulation began from a randomly

drawn genotype with fitness in a certain range, usually close

to the 50th percentile (i.e., within 0.002 of the desired starting

fitness). Individual replicates varied considerably in the number

of adaptive steps and their fitness effects; on average, the walks
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Figure 1. (A) The overall amount of epistasis along an adaptive walk in an NK landscape roughly agrees with its random expectation.

The dots show the frequency of epistatic interactions between substitution i and its immediate successor j , averaged across all steps in

the adaptive walk. The solid line depicts the predicted incidence of epistasis, if sites are chosen to substitute randomly (see supplement).

N = 20 and A = 2. Standard errors are less than 0.001. (B) The frequency of epistasis between subsequent substitutions is depressed

compared to the random expectations, early in adaptation, and augmented late in adaptation. Dots show the frequencies of epistasis

between substitution i and its immediate successor j , indexed by the position of substitution i along the adaptive walk. Lines indicate

the corresponding random expectation. Standard errors are less than 0.01 for all plotted means.

on landscapes with higher K are significantly shorter, but reach

the same level of fitness. Mean and example values of fitness and

walk length are shown in Figures S1 and S2.

RNA FITNESS LANDSCAPES

We also performed Wright–Fisher simulations of evolving RNA

populations using the Vienna RNA folding package, version 1.8.5,

with default folding parameters. RNA sequences of 72 bases in

length constituted the genotypes, and the predicted minimum free-

energy structures determined the phenotypes. Fitness of an RNA

genotype was calculated as (1 + s)−d , where d denotes the tree-

edit distance between the RNA’s phenotype and a defined opti-

mal phenotype. Here s quantifies the strength of selection and

is equivalent to the multiplicative selective coefficient associated

with a mutation that changes d by a single unit; s = 0.01 in

the results shown. The tree-edit distance algorithm, included in

the Vienna package, determines the minimum number of steps

from a group of edit operations that are needed to transform one

structure into another. The initial genotype was drawn randomly,

and the optimum phenotype, used to impose directional selection,

was also created by randomly drawing genotypes and discarding

those whose minimum free-energy structure is the trivial, un-

folded state. This optimum was also required to be 40 units from

the phenotype of the initial genotype so that the pressure to adapt

was strong and uniform across replicates. Simulations were run

for 50,000 generations.

Substitutions in RNA simulations were determined by tracing

a line of descent, as described earlier for NK simulations. Because

our goal was to study adaptation among beneficial mutations, we

filtered the resulting records of substitutions by ignoring adjacent

pairs on the line of descent when both members of the pair were

neutral or deleterious on the background in which they originally

fixed. In practice, less than 1% of pairs were excluded by this

rule, so our results are not sensitive to this criterion.

DATA ARCHIVING

Simulation results, C code, and R scripts have been archived at

the Dryad doi:10.5061/dryad.f468j.

Results
PREVALENCE OF EPISTASIS ALONG AN ADAPTIVE

WALK

To understand how selection shapes epistasis among the muta-

tions that substitute, we first simulated adaptive walks in which

beneficial mutations substitute sequentially, according to the sim-

ple infinite-population expectation of their fixation probabilities;

we refer to these simulations as adaptive walks (see Methods).

Østman et al. suggested that epistatic interactions should not in-

fluence substitution patterns when rare beneficial mutations fix

independently (Østman et al. 2012). Our results initially appear

to confirm this expectation. Figure 1A shows that sites that fix
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Figure 2. Mutations at sites that interact with recent substitutions are less favorable early in evolution and more favorable late, in

comparison to noninteracting sites. Histograms depict the frequencies of the selective coefficients of mutations across many replicate

adaptive walks with parameters N = 20, K = 1, and A = 2. After an adaptive substitution occurs at site i , all (A − 1)(N − 1) other possible

mutations are inspected and classified by whether their fitness effects depend on site i epistatically, or are independent of it. As the

adaptive walk proceeds, the selection coefficients of available mutations shift toward negative values in general. At the same time,

among the adaptive mutations available late in evolution, the great majority of them interact with a recent substitution. Thus, epistasis

tends to retard the substitution of interacting sites early in evolution, and promote such substitutions late in evolution.

sequentially are almost as likely to interact epistatically as are

pairs of randomly chosen sites. However, this concordance dis-

appears when epistasis is examined along the sequence of steps

comprising an adaptive walk. Figure 1B shows that epistasis is

in fact suppressed early in adaptation, and enriched among later

steps, compared to a random (neutral) walk. Thus, selection bi-

ases the amount of epistasis among the mutations that fix along an

adaptive walk, and it does so in a complex manner. Because walks

vary substantially in length (Fig. S1), the strong positive biases

seen after a number of steps occur infrequently and are therefore

approximately balanced by the smaller negative biases character-

istic of early steps. These opposing effects therefore produce an

apparent agreement with the random expectation for the overall

prevalence of epistasis when observations are coarsely averaged

across entire walks, but in fact these results demonstrate that epis-

tasis can shape patterns of substitutions even when mutations fix

independently, one after another.

Why does selection suppress apparent epistasis early in walks

and promote it later? To address this, we studied how mutations at

sites along an adaptive walk influence the fitness effects of the sites

with which they interact. In particular, in the simple case of K = 1,

Figure 2 shows the distribution of fitness effects of mutations at

those sites that do and do not interact with the site that has just

substituted along a walk. For a site i that changes early in the walk,

mutations at its interacting sites are less likely to be beneficial.

In other words, adaptive substitutions early in the walk partly

undermine the benefits that would be conferred by mutations at

their partner sites. Therefore, after an early substitution at one

site, its epistatic partners are less likely to substitute than they

would have otherwise—and so the early steps in an adaptive walks

exhibit a deficit of epistasis compared to the neutral expectation.

This bias against epistasis early in a walk is caused by the

dependency of selected substitutions on the backgrounds in which

they were selectively favored. When a site forms part of the
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Figure 3. Prevalence of synergy, antagonism, and sign epistasis among pairs of consecutive substitutions (i, j ) along adaptive walks on

NK landscapes. Such walks are characterized by an abundance of antagonism early in adaptation, and an abundance of sign epistasis

late in adaptation. (A) K = 1, (B) K = 5. N = 20 and A = 2.

relevant genetic background for a beneficial substitution, it is

statistically likely that changes at such a site would partially un-

dermine the beneficial effect of this fixed adaptive substitution.

Figure S3 demonstrates this regression to the mean effect: selec-

tive coefficients of mutations at a site j are suppressed when j

interacts with a site i that has just fixed an adaptive mutation,

and this suppression is greater when the beneficial effect of the

substitution at i is larger.

This argument leads to the opposite pattern late in adaptive

walks, when most mutations are deleterious. Consider the case of

a high-fitness genotype in which only one locus may mutate to

a beneficial allele. When this one beneficial change fixes, it may

then alter the fitness effects of its epistatic partners so that a po-

tential mutation at another site now becomes beneficial. Because

this now-beneficial change is the only possible route to further

adaptation, it too will surely fix; this fixation may epistatically

perturb the fitness effects of yet another locus, leading to still fur-

ther adaptation. Thus, when the vast majority of possible genetic

changes are deleterious, epistatic interactions become the only

avenue for adaptation, and so interacting pairs of substitutions are

frequently observed late in adaptation.

FORM OF EPISTASIS ALONG AN ADAPTIVE WALK

Aside from biasing the amount of epistasis along a walk, selection

also biases the type of epistasis between successive substitutions.

We find that the predominant sign of epistasis, as well as its

prevalence, depends on the position of the substitutions along an

adaptive walk. Figure 3 shows that early substitutions tend to show

antagonism with one another, whereas later substitutions typically

exhibit sign epistasis, defined as pairs of mutations where at least

one member has a beneficial fitness effect on one background

and a deleterious effect on the other. Synergy between beneficial

mutations is present but less common than antagonism at early

steps and less common than sign epistasis at later steps. The

shift from antagonistic toward synergistic/sign epistasis helps to

explain why epistasis is suppressed early in an adaptive walk and

augmented later in the walk.

Selection also biases the directionality of interactions be-

tween successive substitutions along an adaptive walk (see Meth-

ods). Figure 4A shows that interactions with i upstream of j are

more frequent than the converse along the entire adaptive walk.

When K > 1, another type of interaction is possible: i and j might

not influence each other directly, but both might influence a third

site. Epistasis of this type is expected to be very common when K

is a substantial fraction of N , and results for K = 5 show that the

prevalence of this type of interaction also changes along adaptive

walks (Fig. 4B). Thus, evolution biases the types and directions

of interactions among substitutions along an adaptive walk.

Choosing the K sites which influence each of the N loci

defines a network of directed interactions. Although the number

of sites that influence a locus (its in-degree) is fixed at K , the

number of sites that a locus influences (its out-degree) is vari-

able and approximately Poisson distributed. Figure S4 shows

that this variation in epistasis affects the rate of substitution.

The out-degree of substituted sites is initially slightly higher

than expected, then declines with substitution number. Because

loci with a high out-degree influence more sites, they may have

stronger effects on fitness when mutated. In the backgrounds of the
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Figure 4. Observed frequency of directional epistatic interactions between substitution i and its immediate successor j along adaptive

walks on NK landscapes. (A) K = 1 and (B) K = 5. A single pair may be counted as more than one type of epistasis, as in the case of

reciprocal interactions. The dashed lines depict the predicted incidences if substitutions are chosen randomly (Eqs. (1)– (3)). For K > 1,

another class of epistasis is possible: both i and j may jointly influence a third site, which we refer to as an indirect interaction. N = 20

and A = 2. Standard errors are less than 0.01 for all plotted means.

starting genotypes, site out-degree does correlate with the mean

size of a beneficial mutation: each increment in degree corre-

sponds to about a 0.01 increase in mean selective coefficient

(slope = 0.0097 ± 0.0001, R2 = 0.03, P < 2 × 10−16). How-

ever, there is no relationship with the probability that a mutation

is beneficial (logistic regression, P = 0.72). The greater size of

selective coefficients for high out-degree loci probably explains

their greater tendency to substitute early, as well as the influence

of the directionality of epistasis shown in Figure 4.

ROBUSTNESS OF RESULTS AND COMPARISON

TO DATA

The NK model has several features that could amplify the biases

in epistasis introduced by natural selection; for example, alter-

native fitness contributions of a locus are drawn independently,

each locus contributes equally to fitness, and conditionally neutral

changes are very rare. To assess whether these model assumptions

might be responsible for our qualitative results, we explored vari-

ants of the NK model as well as a completely different class of

genotype–phenotype maps.

We first examined how the patterns shown in Figure 4 change

as the number of alleles per site and the starting fitnesses were var-

ied. Figure S5 shows that deviations from the expected prevalence

of epistasis are qualitatively similar, and quantitatively greater,

when the number of alleles per site, A, is increased. This sug-

gests that the 20 sites in the genetic sequence of our model can

be interpreted flexibly; by changing A and K , we can represent

nucleotides or amino acids in a single protein, or multiple genes

with many possible alleles. Figure S6 confirms that the basic pat-

tern of our results is also robust to changes in the fitness of the

starting genotype.

We also examined if either the ratio K:N, or the absolute

magnitude of K predicts the nature of the epistatic pattern by

varying N as well as K . Fig. S7 shows that the ratio of K:N

does not predict a consistent pattern of epistasis across variation

in N . The value of K is similar for N = 20 and N = 40, but

differences are apparent at higher step numbers. Larger genomes

permit more adaptive steps, suggesting that the pattern of epistasis

among adaptive substitutions will depend on both N and K .

Although we have focused on evolutionary dynamics in the

simplified, strong-selection–weak-mutation regime, we can use

individual-based simulations to explore epistasis in polymorphic

populations with larger values of the population-scaled mutation

rate, θ. Figure S8 show patterns for the prevalence of epistasis

among adaptive substitutions which differ from the neutral expec-

tations, even when θ is one or greater 1. Although the deviations

are smaller in these more complex populations, these results at

high θ confirm the major patterns found in adaptive walks at low

θ: there is a deficit of epistasis early in evolution, and a surplus of

epistasis later in adaptation, with a predominance of interactions

in which the effect of each substitution depends on the preceding

substitution along the line of descent.

We also considered a very different set of fitness

landscapes—computationally predicted RNA folding—to assess

the generality of our principal findings. RNA sequences do not

have predetermined epistatic interactions between sites; instead,
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interactions emerge from the folding topology and change with

genotype. However, we can still measure the average frequency

of epistasis between substitutions on an evolutionary line of de-

scent; such data show that the prevalence of epistasis does vary

systematically along a series of substitutions, although the trend

is toward decreased epistasis (Fig. S11A). The type of epista-

sis can also be quantified, with the addition of a fourth type;

if mutation i is entirely neutral on its evolved background but

has a fitness effect when combined with mutation j , we call this

“neutral epistasis.” The opposite case, in which i has a fitness

effect on its evolved background but is neutral in the background

containing j , is classified identically. This additional category of

neutral epistasis is needed because many mutations in RNA do

not change the minimum-free-energy structure, and are therefore

truly neutral in that context. Figure S11B shows that, as in the NK

model, early antagonism gives way to a high prevalence of sign

(and neutral) epistasis later in adaptation. Although these results

are qualitatively different in the direction of the trend of epistatic

prevalence along a walk compared to those obtained in the NK

model, they further illustrate that evolution at θ < 1 can indeed

bias the epistatic properties of fixed mutations, and it does so

differentially at different stages of adaptation.

IMPLICATIONS FOR INFERENCES FROM

EXPERIMENTAL DATA

Two recent studies on experimental populations of bacteria have

inferred that antagonistic epistasis among beneficial mutations is

common and ultimately explains a trend of diminishing fitness

gains over time (Chou et al. 2011; Khan et al. 2011). These stud-

ies relied in part on regression analyses of the fitness effects of

observed substitutions in the presence and absence of the other

beneficial substitutions observed in the experiment. Both studies

found a trend toward smaller beneficial effects when substitutions

were assayed in backgrounds of higher fitness and so concluded

that antagonistic epistasis decelerates adaptation. However, we

demonstrate later that in the NK model, such regressions are not

a reliable indicator of the effect of epistasis on the speed or ex-

tent of adaptation. Our results suggest that a common statistical

artifact—regression to the mean—confounds the interpretations

of such regressions and that analyses of the role of epistasis in

adaptation may be meaningful only when the actual ordered se-

quence of substitutions is known.

We performed the same kinds of regressions as Chou et al.

(2011) and Khan et al. (2011) on adaptive walks simulated on

NK landscapes. Specifically, we computed rank regression co-

efficients of background fitness versus fitness effect for the first

five substitutions in such adaptive walks (see Methods). The dis-

tribution of average regression coefficients in Figure 1A shows

a bias toward negative values similar to those seen in bacterial

experiments (Chou et al. 2011; Khan et al. 2011), suggesting that

epistasis becomes more negative with each substitution and de-

celerates the pace of adaptation. However, this interpretation is

contradicted by our results earlier. Figure 3 clearly shows that, on

average, epistasis becomes more positive with each substitution.

Figures 1, 2, and 4 also support this view: epistasis is initially

disruptive to the large fitness gains of early adaptive changes, but

then facilitates later adaptive steps. Finally, Figure 1B shows that

a genotype along the line of descent is typically more fit than

would be predicted from the fitness effects of its component mu-

tations in the ancestor, and that this synergistic effect increases

along adaptive walks.

Our results imply that regression analysis of fitness effects

on different genetic backgrounds (e.g., those performed by Khan

et al. (2011) and Chou et al. (2011)) may be misleading. To

clarify this issue, we examined the mean regression coefficients

for those adaptive walks that were unequivocally accelerated by

epistasis—namely, those walks in which the effect of each subse-

quent mutation was greater than expected under multiplicativity.

Even when restricted to these completely synergistic walks, the

regression analyses of the type shown in Figure 1A. are most

often negative and so would erroneously suggest increasing an-

tagonism (Fig. S12). Furthermore, we also performed random

(neutral) walks, in which substitutions along the line of descent

are equally likely to exceed or fall short of their expected multi-

plicative fitness, given the fitness effect in the ancestor; even in

these walks, regression coefficients of the type studied by Khan

et al. (2011) and Chou et al. (2011) tend be negative (Fig. S13).

These data confirm that regressions of fitness effects against the

fitnesses of genetic backgrounds cannot be reliably used to infer

whether epistasis has slowed or accelerated epistasis, at least in

the NK model.

The tendency of these regressions toward negative slopes

may be caused by the well-known confound of “regression to the

mean.” In these regressions, the dependent variable, fitness effect

of substitution i on a genetic background, is mathematically in-

terrelated with the independent variable, the fitness of that same

background. If the fitness of the background genotype is very

poor, then the epistatic effects of its alleles are statistically likely

to be unusually poor. Any change that perturbs these epistatic

effects is likely to improve their fitness contributions. Therefore,

a substitution in a very unfit background is likely to show a large

beneficial effect simply by perturbing the fitness effects of in-

teracting sites. A similar argument can be made to explain why

fitness effects are often small or even deleterious in highly fit

backgrounds and, by extension, why negative correlations are a

likely consequence of the interdependence between the variables

in this regression.

To assess the relevance of this potential confound for experi-

mental results, we re-examined data from the microbial evolution

experiment of Khan et al. (2011), in which the actual order of
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substitutions that occurred is known. As shown in Figure S14, we

used their fitness measurements to calculate epistasis along the

path of adaptive change. Two methods of calculating expected

fitness, which differ in their choice of reference genotype, both

yield the same qualitative result: epistasis is initially negative, then

becomes positive during the later stages of adaptation. Although

this pattern represents only a single instance of an empirical evo-

lutionary trajectory, its similarity to the patterns expected under

our analysis of a broad class of mathematical fitness landscapes

(Fig. 3) is striking. This reanalysis suggests that epistasis may in

fact be accelerating late adaptation in these experimental popula-

tions, in contrast to the original interpretation of the data (Khan

et al. 2011; Kryazhimskiy et al. 2011).

Discussion
To solve the dual problem of epistasis in evolution experiments—

that evolution experiments are both shaped by epistasis, and pro-

vide a biased sampling of the interactions among the genes that

evolve—requires a substantial expansion of population-genetic

theory for arbitrary fitness landscapes. Because the term “epista-

sis” encompasses all scenarios in which fitness effects of alleles

do not combine independently, no entirely general model of epis-

tasis has been proposed, let alone analyzed. Instead, exploration

of a few “toy” models has led to appreciation of the subtle and

significant ways that epistasis complicates our understanding of

evolution.

Here we have used the NK model to contravene the intuitive

notion (e.g., (Østman et al. 2012)) that sites substituting one after

another will be selected without regard to their epistatic interac-

tions. To summarize, we have shown that, even when mutations

are rare, evolution selects among possible substitutions based

upon the number and direction of connections to other loci, and

that these selective biases change substantially along the course

of adaptation. In the NK landscapes, epistasis is less prevalent

than the random expectation early in adaptation and much more

prevalent later, with a concomitant shift from predominantly an-

tagonistic interactions early in adaptation to synergistic and sign

epistasis later in adaptation. In addition, sites with more epistatic

influences on other loci are more likely to substitute early than

late in adaptive evolution.

The basic intuition behind our results is simple. Early on,

large-effect mutations tend to act antagonistically, which sup-

presses the frequency of epistasis among subsequent substitutions.

Later on, the only way to achieve further fitness gains is by fortu-

nate sign epistasis, and this effect tends to augment the appearance

of epistasis as the population approaches a fitness peak. These re-

sults suggest that even the most basic evolutionary process acting

in the context of a simple fitness landscape can produce a complex

expectation for epistasis. Experimentalists must account for this

baseline action of natural selection on epistasis among substitu-

tions if they hope to infer the properties of the fitness landscape

from experimental or natural evolutionary outcomes.

Our results agree with the general empirical finding that the

sets of mutations that occur in a given evolution experiment tend

to show less epistasis than sets of mutations that did not fix in

the same population (Szendro et al. 2013). This empirical trend

suggests that current experiments have examined epistasis only

in the initial phase of adaptation, when beneficial mutations are

relatively common. As a result, it will be difficult to assess what

level of epistasis (i.e., what value of K ) best fits empirical fitness

landscapes. To do so will require studies that quantify epista-

sis for a broad set of mutations—identified using both random

mutagenesis and experimental evolution—in the same organism

and environment. Our results also highlight the importance of

replication in evolution experiments: examining beneficial muta-

tions that occurred across several replicate populations may reveal

greater epistasis. In particular, an experiment that finds significant

epistasis but infers only a single adaptive peak (Chou et al. 2011;

Khan et al. 2011) might well identify multiple peaks if replicate

populations are examined.

We have focused on evolution by sequential fixation of bene-

ficial substitutions to demonstrate that this seemingly simple case

conceals several layers of complexity. However, our results sug-

gest patterns, such as a decrease in observed epistasis among early

substitutions and an increase in epistasis among later ones, that

extend to polymorphic populations as well. By focusing on the dif-

ferences between the distribution of epistasis among all sites, and

the specific sequence of substitutions, our approach highlights the

potential for misleading inferences from evolution experiments

when the order of substitutions is unknown. Specifically, it may

be difficult to reliably determine how epistasis varies with fit-

ness using only the fitnesses of an ancestral, derived, and possible

intermediate genotypes. Regression analyses that ignore substitu-

tion order might suggest that epistasis is decelerating adaptation

(Chou et al. 2011; Khan et al. 2011; Fig. 5), whereas in fact epis-

tasis has had an accelerating effect on the trajectory of fitnesses

along the actual path of adaptation. Indeed, our reanalysis of data

from Khan et al. (2011) supports this possibility. Such discrep-

ancies illustrate the importance of measuring the order in which

substitutions occur, in future experimental studies, to understand

how epistasis has shaped a population’s trajectory.

While the NK model has the advantages of a tunable level of

epistasis and an extensive history of prior work, it certainly does

not capture the full range of possibilities of interactions among

genes. Our results with larger numbers of alleles in the NK model,

with a computational model of RNA folding, and with data from

evolving microbial populations, suggest that the patterns we have

identified in simple cases may be even more pronounced in mod-

els that better approximate biological complexity. However, the
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Figure 5. Two views of epistasis among the first five substitutions in an adaptive walk. (A) Spearman regression coefficients for the

relationships between the fitness effect of a substitution and the fitness of the genetic background in which that substitution is made

(Chou et al. 2011; Khan et al. 2011). Each substitution is tested against the 16 genetic backgrounds comprising all combinations of the

other four substitutions. (B) Proportion of combinations of substitutions along the line of descent which exceed the fitness expected

from the fitness effects of the individual mutations in the ancestor. Expectations are computed according to equations (5)–(8). Standard

errors are less than 1%. In both figures, replicates are filtered to remove adaptive walks with too little epistasis among substitutions

(see Methods)—data shown in panel (B) are additionally filtered to remove cases where W12 = W1W2/W. The analysis on the left panel

would suggest that epistasis is primarily antagonistic, whereas in fact the right panel shows that synergistic interactions dominate along

the walk. N = 20, K = 5, and A = 2.

most important conclusion from our study is that new methods

of data-gathering, such as cheap whole-genome sequencing and

high-throughput fitness assays, will not suffice to answer basic

questions about the role of genotype-phenotype maps in evolu-

tion. Pioneering studies have provided compelling examples of

the ubiquity of epistasis, but they also serve to exemplify the sub-

stantial gap that separates data from hypotheses in experimental

evolution. To definitively link gene interactions to the rate or pre-

dictability of adaptation will require a significant expansion of

the theory of population genetics, and a vital first step is serious

engagement with “toy” models of interacting loci.
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Figure S1. Lengths of adaptive walks.

Figure S2. Fitness changes over the course of adaptive walks.

Figure S3. Relation of the beneficial fitness effect of substitution i to the change in the fitness effect conferred by a mutation at

interacting site j.

Figure S4. Mean out-degree (number of loci which depend epistatically on the focal site) of substituted sites.

Figure S5. Observed frequency of directional epistatic interactions between substitution i and its immediate successor j for

adaptive walks on NK landscapes with different values of A, the number of alleles per locus.

Figure S6. Observed frequency of directional epistatic interactions between substitution i and its immediate successor j for

adaptive walks on NK landscapes for different values of the fitness percentile of the starting genotype.

Figure S7. Frequency of epistasis between substitution i and its immediate successor j in adaptive walks, divided by the neutral

expectation (Eqs. 1–3).

Figure S8. Observed frequency of directional epistatic interactions between substitution i and its immediate successor j for

individual-based simulations.

Figure S9. Observed density of substitutions over time for individualbased simulations.

Figure S10. Mean (red) and five example fitness trajectories for individual-based simulations.

Figure S11. Epistasis in individual-based evolution in a model of RNA folding.

Figure S12. Spearman rank regression coefficients for the relationships between the fitness effect of a substitution and the fitness

of the genetic background in which that substitution is made for adaptive walks which exceed multiplicative expectations at each

step.

Figure S13. Two views of epistasis among the first five substitutions on random (neutral) walks; contrast with the corresponding

data from adaptive (selected) walks in Fig. 5.

Figure S14. Epistasis deviation is initially negative, then becomes positive along the sequence of the first five substitutions

observed in a microbial evolution experiment (Khan et al. 2011).
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