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Introduction

Evolvability describes the ability of populations to adapt

through natural selection, encompassing timescales rang-

ing from changes between generations to major evolu-

tionary innovations (Pigliucci, 2007, 2008). Although

variation within a population drives its response to

selection, that variation ultimately derives from the

variability, or spectrum of potential variants, of individ-

ual genotypes (Wagner & Altenberg, 1996). Evolvability

connects genotypes to the appearance of adaptive vari-

ants, implying that the capacity to adapt is a quantifiable

trait with mechanistic and evolutionary explanations.

Many recent studies have invoked evolvability to address

long-standing questions on mutation rates and the

prevalence of recombination (Otto & Barton, 1997;

Radman et al., 1999; Tenaillon et al., 2001; Bedau &

Packard, 2003; Pepper, 2003; Earl & Deem, 2004;

Goddard et al., 2005; Andre & Godelle, 2006). Evolvabil-

ity is an increasingly popular conceptual tool for under-

standing the evolution of genetic architecture, or the

molecular and developmental processes that link geno-

types and phenotypes (Burch & Chao, 2000; Plotkin &

Dushoff, 2003; Dichtel-Danjoy & Felix, 2004; Kirschner

& Gerhart, 2005; Masel, 2005, 2006; Meyers et al., 2005;

Tanay et al., 2005; Wagner, 2005; Bloom et al., 2006;

Quayle & Bullock, 2006; Cowperthwaite & Meyers, 2007;

Jones et al., 2007; Kashtan et al., 2007; Crombach &

Hogeweg, 2008; Draghi & Wagner, 2008; Lehner, 2008).

Evolvability also connects evolutionary biology to impor-

tant applied questions: the directed evolution of proteins

(Aharoni et al., 2005; Khersonsky et al., 2006; O’Lough-

lin et al., 2006) and adaptive change in microbes, inva-

sive species and other dynamic populations (Plotkin &

Dushoff, 2003; Gilchrist & Lee, 2007; Blount et al., 2008;

Le Rouzic & Carlborg, 2008).

Despite these enthusiastic applications to diverse

questions, the concept of evolvability remains contro-

versial. Although some of these disagreements stem from

the plurality of definitions in use (Pigliucci, 2008), many

objections focus on the contentious claim that natural

selection can act to increase evolvability. Several authors

have questioned whether natural selection can favour a

trait that confers a future benefit (Kirschner & Gerhart,

1998, 2005; Poole et al., 2003; Earl & Deem, 2004;
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Abstract

Evolvability, the ability of populations to adapt, has recently emerged as a

major unifying concept in biology. Although the study of evolvability offers

new insights into many important biological questions, the conceptual bases of

evolvability, and the mechanisms of its evolution, remain controversial. We

used simulated evolution of a model of gene network dynamics to test the

contentious hypothesis that natural selection can favour high evolvability, in

particular in sexual populations. Our results conclusively demonstrate that

fluctuating natural selection can increase the capacity of model gene networks

to adapt to new environments. Detailed studies of the evolutionary dynamics

of these networks establish a broad range of validity for this result and

quantify the evolutionary forces responsible for changes in evolvability.

Analysis of the genotype–phenotype map of these networks also reveals

mechanisms connecting evolvability, genetic architecture and robustness. Our

results suggest that the evolution of evolvability can have a pervasive

influence on many aspects of organisms.
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Sniegowski & Murphy, 2006). Others maintain that only

group-level selection could act to increase evolvability

(Lynch, 2007) or that individual-level selection can

favour evolvability only when recombination is rare or

absent (Sniegowski & Murphy, 2006). Theoretical rebut-

tals have been made to each of these arguments, as

discussed in Draghi & Wagner (2008). However, these

controversies seem to be sustained by a lack of concrete

examples illustrating how evolvability varies and is

shaped by natural selection.

Attempts to remedy this deficit must address the

notorious complexity of the relationships between geno-

types and phenotypes. One solution is to use a simple

model to generate an ensemble of genotype–phenotype

(GP) maps and quantify the variation in evolvability

within this ensemble. Evolutionary simulations of pop-

ulations based on these models can then reveal how

selection differentiates among alternative developmental

possibilities, and uncover how epistasis, pleiotropy and

other aspects of the GP map determine evolvability. To

implement this approach, we adapted a simple model of a

network of genes to examine how the GP map shapes

evolvability and its evolution.

Gene network models are both a useful set of tools for

probing the evolution of complex systems and a prom-

ising step toward an evolutionary understanding of the

empirical networks increasingly generated by molecular,

genomic and developmental biology (e.g. Jeong et al.,

2000; Alon, 2003; de Silva & Stumpf, 2005). Although a

number of simple transcriptional network models have

been applied to evolutionary questions (e.g. Kauffman,

1993; Quayle & Bullock, 2006; Aldana et al., 2007), we

chose to implement a type of model that has led to

significant recent insights into the evolution of muta-

tional robustness (Wagner, 1996; Siegal & Bergman,

2002; Bergman & Siegal, 2003; Azevedo et al., 2006;

Siegal et al., 2007). Robustness and evolvability are both

variational properties deriving from the GP map (Wag-

ner, 2005); so, this prior work establishes that selection

can shape variability in this model. This connection

also suggests that this model can help answer the

open question of the nature of the relationship bet-

ween evolvability and robustness (Schuster et al., 1994;

Kawecki 2000; de Visser et al., 2003; Bloom et al., 2006;

Lenski et al., 2006; Aldana et al., 2007; Wagner, 2008).

Previous work on the evolution of mutation rates

(Kimura, 1967; Sniegowski et al., 2000; Earl & Deem,

2004) and genetic architectures (Jones et al., 2007;

Kashtan et al., 2007; Crombach & Hogeweg, 2008; Draghi

& Wagner, 2008) supports the intuition that evolution in

changing environments could increase evolvability.

Here, we evolve populations of these model networks

in constant and varying environments and show that

fluctuating selection does promote GP maps with higher

evolvability. In contrast to some theoretical predictions

(e.g. Sniegowski & Murphy, 2006), we find that recom-

bination does not prevent this evolution of evolvability.

By tracking the dynamics of mutants within evolving

populations, we link these increases in evolvability to

phenotypic adaptation. Finally, we show that a simple

projection of the complex GP map provides insight into

the genetic mechanisms underlying evolvability in this

model, and connects evolvability to mutational robust-

ness. These results suggest that evolvability can readily

evolve through changes in the GP relationship, even in

the presence of recombination, and demonstrate how to

extract an intuitive basis for evolvability from a complex

network of epistatic interactions.

Methods

Gene network model

Although our model is inspired by those used in other

studies (Wagner, 1996; Siegal & Bergman, 2002; Berg-

man & Siegal, 2003; Azevedo et al., 2006; Siegal et al.,

2007), our implementation is unique. Networks were

modelled as a set of K genes, where each gene can

potentially regulate itself and every other gene. The

direct regulatory influence of gene j on gene i has weight

wij in the interval [)1, 1]. The set of these weights, along

with the description of which regulatory connections are

present, completely describes a genotype. These weights

represent regulatory regions associated with a gene, and

they are the basic unit of heredity in our model; we

therefore use the term ‘site’ to refer to the part of a

regulator determining a single connection, and the term

‘allele’ for the presence or absence, sign and weight of a

regulatory influence. There are therefore K2 sites in a

genome of K genes. Gene expression is either active or

inactive; active genes have the state ‘1’, whereas inactive

genes have the state ‘0’. This is a departure from some

previous versions of this model, and reflects the intuition

that inactive genes should not influence regulation. At

the beginning of each network’s development, each gene

is active. At a discrete time point t, each active gene can

stimulate or repress the expression of other genes. The

state of a gene at time t + 1 is therefore computed from

the sum of its regulatory weights from active genes. If this

sum is greater than zero, that gene will be active at t + 1;

if the sum is zero or negative, the gene will be inactive.

Following Wagner (1996), we refer to the vector of gene

states at time t as S(t), and the successive value is defined

by:

Sðt þ 1Þi ¼
1; if

P
0�j<K

wijSðtÞj > 0

0; if
P

0�j<K

wijSðtÞj � 0

8<
: ð1Þ

Because S(t + 1) is determined solely from S(t), S(t)

fully describes the system’s state, ensuring that within 2K

time points the system will reach a previously visited

state. After returning to a previous state, the system has
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either arrived at a static equilibrium, S(¥), or will

continue to cycle perpetually among two or more states.

If a network reaches a static equilibrium we classified it as

stable, and can then compare its equilibrium phenotype,

S(¥), to a defined optimal phenotype. If d represents the

number of equilibrium gene states that differ from the

optimum, or the phenotypic distance, and s the fitness

cost of each mismatch between the phenotype and the

optimum, then expected relative fitness was assigned as:

wd ¼
1

1þ sð Þd
ð2Þ

This fitness function models multiplicative interactions

among traits, ensuring that the selective benefit of a unit

decrease in d will be independent of d. This independence

simplifies comparisons among populations adapting to

different optima. Furthermore, the strength of selection

is easily tuned through the parameter s. Following

Wagner (1996), we classified cycling networks as less fit

than all stable networks by assigning them a phenotypic

distance, d, of K + 1. As stability does not depend on the

environment, we can refer to genotypes as stable or

unstable.

Network evolution

To test if a periodically changing environment will favour

increased evolvability, we simulated the evolution of

populations of gene networks. These populations con-

sisted of N individuals that reproduce in discrete gener-

ations. In each generation, networks dynamics are

computed to determine their phenotypes, following eqn 1.

Equation 2 is then used to assign a fitness to each

‘adult’ phenotype; these fitnesses directly influence

fecundity. To create an individual of the next genera-

tion, one parent was first stochastically selected with a

probability proportional to its assigned relative fitness.

In asexual reproduction an offspring was cloned, with

possible mutations, from this selected parent. In simu-

lations with sexual reproduction, a second, distinct

parent was chosen in the same way, and the value of

each network connection in the offspring was inherited

independently from one of the two parental genomes.

Therefore, both sexual and asexual populations are

haploid. This model of sexual reproduction simulates

the absence of any linkage among the sites determining

regulatory influences; although unrealistic, this extreme

model provides the greatest contrast to asexual repro-

duction.

In either mode of reproduction, two types of mutation

could occur. These types alter the two properties of each

site: the presence ⁄ absence of a connection and the

weight if that connection exists. The weight of each

extant gene interaction could mutate with rate l and by

an amount uniformly chosen from the interval [)m, m),

and weights were confined to the interval [)1, 1] by

reflecting boundaries. These choices ensure that, at

mutational equilibrium, all allele values in the interval

are equally likely. As alleles values are initially uniformly

distributed, mutation and drift alone will not systemat-

ically alter allele states, and the action of natural selection

becomes easier to detect. By changing m, we can alter the

degree to which mutations are contingent on the prior

allele state, and consequently explore a broad class of

models of mutation. A separate class of mutation alters

network architecture: an extant connection may be

deleted with rate lA, and an absent connection may be

added with the same rate. Deleted connections have their

weights set to zero, whereas new connections have

weights drawn from the interval [)1, 1). By equalizing

the rates of insertion and deletion, we maximized the

ability of mutation to produce diverse network topolo-

gies.

In a random initial network, each possible connection

was present with probability 0.5, and connection weights

were drawn uniformly. This procedure produced a high

diversity of networks, and ensured that the number of

connections in a network began near mutational equi-

librium. However, random generation of networks pro-

duces a biased distribution of phenotypes. To prevent this

inequality from influencing the differences between

evolved and initial genotypes, we often analysed ensem-

bles where an equal number of simulations were seeded

with each of the 2K phenotypes. Once a random network

was generated, it was cloned to initiate the simulation

with an identical population of N individuals.

Measuring evolvability

To produce a robust measure of the potential to adapt, we

devised the following algorithm. First, a genotype was

expanded into a population of identical clones, then

evolved in a specified environment for T generations. To

quantify adaptation, we compared the phenotypes in the

evolved population with the ancestral phenotype. We

then averaged the progress toward the phenotypic

optimum across the population to produce a measure of

adaptation based on the Hamming distance, or number of

mismatched expression states, between phenotypes. For

example, if the initial clone had three mismatches with

the optimum, the potential evolved Hamming distance

would be three. If, after T generations, half of the

individuals had a single mismatch with the optimum,

and half had two mismatches, the mean evolved distance

would be 1.5. These evolution trials were replicated, and

performed across all environments where adaptation is

possible. In the case of K = 4, any stable genotype has

one of 16 possible phenotypes, and so can adapt to any of

the other 15. The evolved distances for these trials were

summed, then normalized by dividing by the sum of the

initial phenotypic distances across all trials. This calcula-

tion produced values between 0 and 1, where 1 measures

a genotype that will result in a completely adapted

population in any environment within T generations. To
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illustrate, consider combining the example trial described

above, where the population evolved 1.5 units out of a

possible 3, with a different trial where the population

begins with one mismatch, then half of the individuals

evolve to perfectly match the target. The summed

evolved distance of two would then be normalized by

division by four, producing an evolvability measure of

0.5 for this example. We refer to this evolvability after

T generations as ET.

We found, as illustrated in Fig. S1, that the choice of T

can change the rank order of ET within a set of

genotypes. To find the most informative observation

period, we examined the correlation between the ordinal

rank of the epoch and ET for a range of values of

T. Spearman rank correlations for 40 values of T are

plotted in Fig. S2. The weakest correlation, between E200

and epoch number, is 0.3944; however, this value is

higher than any of 10 000 correlations between epoch

number and randomly shuffled values of E200, suggesting

that all of the correlations are significant. To further

investigate the evolution of evolvability, we focused on

E25, the maximally correlated measure (T = 25 also yields

the maximal correlation as calculated by Kendall’s s, an

alternative metric of rank-order correlation).

Results

Evolvability in fluctuating environments

Figure 1 plots our evolvability measure, E25, for sets of

evolutionary simulations in three scenarios: asexual and

sexual reproduction in fluctuating environments and

asexual reproduction in a stable environment. E25 is

measured for a random, stable genotype at the begin-

ning of each epoch; population sizes and mutation rates

for these assays are always identical to those of the

evolving population. A point on this plot is the mean of

160 evolvability scores, each representing a separate

population. Each evolvability score is composed of 30

replicate trials for each of the 15 alternative environ-

ments, yielding 450 measurements for each genotype.

As above, K = 4, N = 1000, l = 0.00317, lA = 3.17 ·
10)5, m = 0.2, s = 1, P = 100 and 10 populations were

initiated from each possible phenotype. Filled circles

correspond to asexual populations, whereas filled trian-

gles show the results of evolving sexual populations in

the same scenario. Note that in sexual populations,

model networks experienced obligate recombination

during both evolution and E25 measurements, and yet

the pattern of evolvability over time is very similar to

the asexual case.

To confirm that a changing environment was neces-

sary for evolvability to increase, we performed control

simulations with the same parameters in static environ-

ments. Populations began with the optimal phenotype

for the unchanging environment and therefore evolved

under stabilizing selection. The open circles in Fig. 1

show these results for asexual reproduction: here E25 is

seen to decline slightly but insignificantly over time

(linear regression, F1,1278, P = 0.1314). These results

demonstrate that the directional selection experienced

by populations in changing environments is necessary for

evolvability to evolve.

E25 was tuned to capture the increase in evolvability

seen in populations with the specific parameters given

above. In populations of different sizes, with different

mutation rates, evolvability over greater or lesser periods

than 25 generations might be more relevant, and E25

might underestimate evolvability. It is therefore difficult

to quantitatively compare values of E25 across simula-

tions with different parameter values. Instead, we have

demonstrated that the fundamental result, that evolution

in changing environments increases evolvability, is valid

over a wide range of parameters. Appendix 1 presents

simulations with different population sizes, rates of

environmental change, mutation rates and network

sizes. In summary, these results confirm that evolvability

increases over a significant range for each parameter of

the model.

Recombination and the evolution of evolvability

Based upon models of mutator alleles (Sniegowski et al.,

2000; de Visser, 2002), some authors have argued

that recombination will generally suppress the evolu-

tion of evolvability (Sniegowski & Murphy, 2006). If

Fig. 1 E25 increases with epoch number in changing environments.

Filled symbols are populations in which the optimal phenotype

changes every 100 generations; the filled circles represent clonal

reproduction, whereas the filled triangles represent populations with

recombination. The open circles represent control populations that

experience stabilizing selection for the entire 64 epochs. Each point

is the mean of 160 simulations, consisting of sets of 10 populations

starting from each of the 16 possible phenotypes. Bars are standard

errors. Parameters are K = 4, N = 1000, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 1.
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recombination can prevent the evolution of evolvability

in our model, this result would indicate that the

determinants of evolvability, like mutator alleles, could

be separated from any adaptations they might cause. By

contrast, recombination is not expected to oppose evolv-

ability if the determinants of evolvability are epistatically

linked to any beneficial mutations they promote, such

that multiple alleles are required for the beneficial effect

to be expressed (Draghi & Wagner, 2008). Further

examination of the effects of recombination in this

model can both test the hypothesis in Sniegowski &

Murphy (2006) and describe the genetics of evolvability

in model networks.

Although Fig. 1 shows that recombination does not

necessarily prevent the evolution of evolvability, simu-

lations with weaker selection can provide a more critical

test. In Fig. 1, as in the majority of our data, each

beneficial mutation doubles the fitness ascribed to a

genotype. This strong selection allows beneficial mutants

to fix quickly, potentially masking the effects of recom-

bination. We performed additional simulations, in which

beneficial mutations are 10-fold less strongly selected, to

more stringently test the effects of recombination on

evolvability.

To promote adaptation through these weakened ben-

eficial mutations, we performed these simulations with

K = 4, N = 10 000 and P = 100, and used test popula-

tions of 10 000 individuals to test evolvability; other

parameters were the same as those used in the section

‘Evolvability in fluctuating environments’. The evolution

of ET in these populations is plotted in Fig. 2. In contrast

to the results plotted in Fig. 1, asexual populations

achieved a higher level of ET than sexual populations

when s = 0.1. Nonetheless, linear regressions confirmed

that ET significantly increased over time for both modes

of reproduction, at both values of T (E25, asexual:

F1,510 = 92.51, P < 2.2 · 10)16; E25, sexual: F1,510 =

49.16, P = 7.51 · 10)12; E100, asexual: F1,510 = 181.8,

P < 2.2 · 10)16; E100, sexual: F1,510 = 62.12, P = 1.97 ·
10)14).

The dynamics of evolvability in evolving populations

The results discussed above strongly imply that shifting

directional selection causes evolvability to increase. To

explain how evolvability is favoured in evolving popu-

lations, we conducted detailed studies of the dynamics of

evolvability in evolving populations.

Without a genotypic proxy for evolvability, we mea-

sured E25 for each genotype of an evolving population.

This was computationally feasible only for asexual

populations, where most offspring are clonal and there-

fore inherit the parent’s value of E25. As in the section

‘Evolvability in fluctuating environments’, K = 4, N =

1000, l = 0.00317, lA = 3.17 · 10)5, m = 0.2, P = 100,

s = 1, and four populations, each starting from a different

phenotype, were examined for 20 epochs each.

As illustrated in Fig. S3, evolution in these popula-

tions can be divided into two types of intervals: brief

periods of rapid adaptation, and longer stretches of stasis

in fitness. These dynamics are a consequence of the

rarity, and uniformly large effect, of beneficial muta-

tions. Based on this dichotomy, we analysed the change

in E25 during the fixation of beneficial mutations and

during periods of neutral evolution. With a complete

record of the fitness of every individual, it was possible

to use the variance in fitness within each generation as

an indicator of the rate of adaptation. A useful heuristic

was that those generations where the variance of the

natural log of fitness was less than 0.02 were evolving

neutrally, and generations above that cut-off were

adapting.

The effect of adaptive evolution on evolvability was

measured by comparing the mean E25 of individuals

in the population before and after each period of

Fig. 2 The evolution of ET in asexual and sexual populations with

smaller selective coefficients, s. N = 10 000, P = 100, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 0.1. T, the duration of the

evolvability measurement, is 25 in (a) and 100 in (b). Circles

indicate no recombination, triangles full recombination. Bars

indicate standard errors.
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adaptation. These data were not normally distributed; so,

a Wilcoxon signed-rank test was used to assess the paired

differences. Selective sweeps were found to signifi-

cantly increase E25 (two-tailed test, 76 pairs, V = 1897,

P = 0.0248), confirming our expectation that directional

selection increases evolvability. By contrast, neutral

evolution significantly lowered E25 (two-tailed test, 81

pairs, V = 882, P = 0.000249). This agrees with the

results from static environments in Fig. 1, and supports

the conclusion that in our model nonadaptive evolution

does not increase evolvability.

Our simulations also recorded the lineage of each

organism, permitting analysis of the progenitors of

beneficial mutants. Individuals that produced a benefi-

cial, potentially adaptive mutant in the next generation

had significantly higher values of E25 than their average

contemporary (Fig. S4a; Wilcoxon signed-rank test, 628

pairs, two-tailed, V = 143 425, P < 2.2 · 10)16), provid-

ing further evidence that E25 predicts evolutionary

success and thus evolvability is a target of selection.

These beneficial mutants had similar values of E25 to

their parents (Fig. S4b; Pearson’s r = 0.96); however, in

the set of 628 mutants, we found no evidence that non-

neutral mutations systematically changed E25 (Wilcoxon

signed-rank test, two-tailed, V = 95 990, P = 0.5436).

These observations support a causal link between evolv-

ability and beneficial mutations: the appearance of

beneficial mutations increases with evolvability, but the

substitution of a beneficial change does not, in itself,

increase evolvability.

Evolvability at the network level

The preceding sections established that some genotypes

are more likely to produce adaptive mutations, and that

this evolvability can be passed down to the successful,

mutant descendants of evolvable genotypes. We sought

to explain these properties by correlating evolvability

with structural characteristics of gene networks. Many

studies have addressed the influence of mutation rate on

evolvability (Tenaillon et al., 2001; Bedau & Packard,

2003; Earl & Deem, 2004; Andre & Godelle, 2006); so, an

obvious starting point is the contribution of network

topology to mutation rate. Recall that extant connections

change their weights at a rate l, whereas topological

mutations, where connections are inserted and deleted,

occur at a lower rate lA. In the simulations examined

above, l is 100 times larger than lA. If we treat all

mutations as equivalent and let c represent the number of

extant connections in a network, the genomic mutation

rate U is:

UðcÞ ¼ lc þ lAK2 ¼ l c þ K2

100

� �
ð3Þ

The overall mutation rate of a network can therefore be

substantially modified by changes to the connectivity of

its topology.

We compared c and E25 for a set of 10 000 randomly

generated, stable networks. These networks were drawn

from the same distribution as those used to initiate

evolutionary simulations, except that phenotype fre-

quencies were not equalized. Evolvability was assessed

using the same parameters as in the section ‘Evolvability

in Fluctuating Environments’. K = 4, N = 1000, l =

0.00317, lA = 3.17 · 10)5, m = 0.2 and s = 1. These

data, plotted in Fig. S5, indicate that evolvability cannot

be trivially reduced to the density of network connec-

tions and thus to the genomic mutation rate. After

inspecting the plot, a third-order polynomial regression

was performed. However, this regression explained

only 1% of the variation in E25, suggesting that c

does not explain evolvability (overall F3,9996 = 33.34;

tintercept = 5.828, P = 5.77 · 10)9; x: t = 1.842, P =

0.0656; x2: t = )1.681, P = 0.0927; x3: t = 1.096,

P = 0.273). In addition, high c values, which lead to

higher mutation rates, were associated with lower

evolvability. Finally, we measured c in evolving popula-

tions, with and without sex (K = 4, N = 1000, P = 100,

l = 0.00317, lA = 3.17 · 10)5, m = 0.2, s = 1 and 64

replicates). Linear regressions of c on time were not

significant (asexual: F1,574 = 1.357, P = 0.2445; sexual:

F1,574 = 0.5381, P = 0.4635), providing additional evi-

dence that c does not determine evolvability.

After some experimentation, a simple network prop-

erty was discovered that explained a substantial fraction

of the variation in E25 among random networks. This

property, which we refer to as the network excitation, is

the sum of all the connection weights within a network.

The relationship between E25 and network excitation is

plotted in Fig. 3. The plotted data suggest that an

asymmetrical curve might describe the apparent rela-

tionship; so, a third-order polynomial was chosen to

regress this sum on E25. This regression was highly

significant for all four model parameters, and explained

22.6% of the variation in E25 (overall F3,9996 = 972.7;

tintercept = 186.53, x: t = 38.66, x2: t = )27.28, x3: t =

)14.44; all P < 2 · 10)16). This curve has a maximum at

about 1.8, suggesting that evolvability is generally the

highest when positive regulatory connections somewhat

outweigh negative influences. Below, we demonstrate

that this result provides an intuitive explanation for

evolvability and its evolution.

To understand how the sum of connection weights

influences evolvability, we examined how genotypes

map to phenotypes within our model. Recall that a gene

without net positive regulation will be inactive, and that

each gene is initially active. If all genes are connected to

each other by exclusively negative interactions, each

gene will begin in the active state, immediately be

repressed into inactivation, then will maintain that

inactive state indefinitely. Clearly, though, it is not

necessary that all connections are negative, merely that

negative regulation predominates for each gene. We

therefore expected that this inactive phenotype, labelled
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as ‘0000’ in the case of K = 4, might be associated with

networks with mostly negative interactions. Similarly,

networks with many positive interactions could results in

the ‘1111’ phenotype. Finally, a gene that is repressed

and stimulated equally will be inactive. This asymmetry

suggests that phenotypes with some active and some

inactive genes, such as ‘1001’, may have more positive

than negative interactions on average. This reasoning

suggested an association between the balance of regula-

tory weights and the number of active genes in the

phenotype, and predicted that intermediate phenotypes

will often have a positive balance of weights.

To confirm these predictions we produced a much

larger set of 100 000 random networks, which was not

filtered to equalize the representation of each phenotype.

Networks with stable phenotypes were then grouped into

five classes, corresponding to 0, 1, 2, 3 or 4 active genes.

We then computed the sum of the regulatory weights for

each network – network excitation. Figure 4 shows the

distributions of network excitations associated with the

five classes of phenotypes. These data reveal that the GP

map is highly degenerate: each phenotype can be

constructed from many genotypes with a range of

network excitations. However, the hypothesized connec-

tion is evident: network excitation clearly correlated with

the number of active genes in the phenotype. The data in

Fig. 3 suggest that genotypes with network excitations

between about 1 and 2 often have high evolvabilities;

intriguingly, Fig. 4 reveals that this same range con-

tains many networks corresponding to each phenotypic

class.

These results suggest an explanation for the

connection between network excitation and evolvability:

networks with optimal excitation may be near, with

respect to mutation, genotypes that map to a variety of

other phenotypes. Evolvable genotypes might then be

said to exist at a confluence of the genotype distributions

for each phenotype. As evolvable genotypes are muta-

tionally close to alternative phenotypes, they can rapidly

adapt through a small number of changes. Thus, network

excitation may change little during the adaptation of

evolvable genotypes, and therefore high evolvability may

be inherited and maintained. By contrast, networks with

suboptimal excitations may not be able to produce

alterative phenotypes with single mutations, and may

require neutral changes before beneficial mutations are

accessible. Adaptation in these populations will often be

slow, and will tend to result in descendants that have

evolved, through drift and selection, to be closer to the

optimal excitation.

This hypothesis suggests a partial explanation of why

networks vary in evolvability, and how evolution in

changing environments leads to more evolvable geno-

types. To test this model of evolvability and its evolution,

we derived several new predictions. First, we note that

the distributions of excitations for phenotypes ‘0000’

and ‘1111’ extend far from the predicted optimum:

E25 should have strong, monotonic and opposite rela-

tionships with network excitation for these extreme

Fig. 3 The sum of the connections of a network, or network

excitation, plotted against E25 for 10 000 randomly generated, stable

networks. The curve illustrates a third-order polynomial regression.

Reproduction is asexual, and K = 4, N = 1000, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 1.

Fig. 4 Range of network excitations associated with networks of

each class of phenotype. The 16 possible expression patterns in four-

gene networks are reduced to five categories based upon the number

of active genes in each phenotype. Network excitation is the sum of

the positive and negative regulatory weights within a network.

Histograms reflect the distribution of excitations among randomly

generated networks with the specified phenotype.
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phenotypes. Second, network excitations in populations

in changing environments should typically evolve to

occupy a narrower range of values when compared with

populations under stabilizing selection. Third, we ex-

pected that the probability that a mutation changes the

phenotype, or the volatility of a genotype, might increase

during evolution in a changing environment. Specifi-

cally, we define volatility as the fraction of mutations

that produce an altered, but stable, phenotype, and

expect that volatility will increase with evolvability. This

relationship is expected if the variety of phenotypes in a

mutant spectra and the frequency of neutral mutations

are negatively correlated.

We reanalysed the data in Fig. 3 with respect to

phenotype to test this first prediction. As the excitations

of networks with the ‘0000’ phenotype are often lower

than those typical of other phenotypes, we expect a

positive relationship between excitation and E25 for this

phenotype. These data, shown in Fig. 5a, indeed posi-

tively correlated with a Pearson R2 of 28.5%. Similarly,

genotypes that map to the ‘1111’ phenotype should often

have very high excitations, and excitation should there-

fore be negatively associated with E25. Data for this

phenotype are plotted in Fig. 5b, and the Pearson R2 for

this negative relationship is 42.7%.

To test the latter two predictions, we measured

network excitation and volatility during evolution in

changing and static environments. Eight hundred simu-

lations were performed for each condition, with para-

meters as above (K = 4, N = 1000, P = 100, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2, s = 1), and one randomly

chosen network was measured every 100 generations.

Networks were then grouped into the five basic pheno-

typic classes to determine how the mean network

excitation associated with each class changed over time.

Figure 6a confirms that the mean network excitation

Fig. 5 Network excitation and E25 for genotypes mapping to specific

phenotypes. (a) Genotypes corresponding to the ‘0000’ phenotype,

where all genes are inactive at equilibrium; (b) genotypes generating

phenotype ‘1111’, where all genes are active at equilibrium.

Reproduction is asexual, and K = 4, N = 1000, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 1.

Fig. 6 Mean network excitations among phenotypic classes in

evolving populations. Symbols represent mean network excitations

for the five classes of phenotypes: the filled area in each symbol

corresponds to the number of inactive genes in that phenotype.

Reproduction is asexual, and K = 4, N = 1000, P = 100, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 1. Bars show standard errors.

(a) Eight hundred replicates evolved in a changing environment;

(b) 800 replicates evolved under stabilizing selection.
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converged toward the predicted optimal range in popu-

lations evolving in a changing environment. By contrast,

no convergence was seen when populations were sub-

jected to stabilizing selection (Fig. 6b).

Figure 7a plots the volatility of sampled networks over

time. Volatility is measured by producing a library of

10 000 genotypes with single-mutation differences from

their parent genotype. These differences include changes

in both connection weights and topology, in the same

ratio as these mutations occur in our other evolutionary

simulations. The fraction of this library that produces a

different, but stable, phenotype from the parent is a

measure of volatility. There is a clear increase in volatility

with time in a changing environment, but not in static

environments. This pattern suggests that the robustness

to mutation, calculated as the fraction of mutations that

do not alter the phenotype, might significantly decrease

over time. Because the fraction of mutations that

produce unstable phenotypes is not included in either

measure, it is not strictly necessary for volatility and

robustness to negatively covary. However, Fig. 7b shows

that robustness does decrease as volatility and evolvabi-

lity increase. Network excitation therefore affects both

the probability of a non-neutral mutation, and the

distribution of those mutations among phenotypes.

Discussion

We have demonstrated that evolvability can evolve

through changes in the GP relationship, and that this

evolution of evolvability is a consequence of adaptation

in a changing environment. This qualitative result holds

over a range of population sizes, periods of change and

mutation rates, although our method does not allow a

fully quantitative analysis of the influence of these

factors. Our results also demonstrate that recombination

does not necessarily prevent natural selection from

favouring an increase in evolvability. These findings

illustrate the complex GP relationship inherent in a very

simple model of gene interactions, and reveal surprising

subtleties of the interplay between natural selection and

an evolving GP map.

We have also shown that a projection of genotype

space to a single dimension can help explain the

mechanisms of evolvability in our model. Intriguingly,

this quantity, which we call ‘network excitation,’ has a

clear biological interpretation: it is the balance of positive

and negative regulatory influences in a transcription

factor network. This sum predicts the extent to which a

gene’s expression state is over-determined, and therefore

the propensity for mutations of small effect to alter

network dynamics. This discovery suggests that, although

GP maps may be very complex, their connections with

evolvability might be simple and intuitive.

The investigation of this model was designed to focus

on the evolution of variability in the context of a

complex GP relationship. Although our network model

is obviously very simple in comparison with biological

systems, its dynamics produce a nontrivial GP map with

many of the features, such as widespread epistasis,

degeneracy and pleiotropy, of real organisms. Our focus

on changes in the GP map is complementary to the many

studies that have explored how the evolution of muta-

tion and recombination rates contributes to evolvability

(e.g. Kimura, 1967; Otto & Barton, 1997; Sniegowski

et al., 2000; Earl & Deem, 2004). Unifying these

approaches into a coherent picture of the factors con-

tributing to evolvability is a major challenge for future

research.

Our results complement several recent studies of

evolvability in network models and establish a more

detailed understanding of the population genetics of the

evolution of evolvability. Two previous studies (Quayle

& Bullock, 2006; Aldana et al., 2007) examined evolv-

ability with network models, but did not characterize

the structural basis or evolution of the trait. Crombach

& Hogeweg (2008) studied a much different network

model, and found that over repeated adaptation to two

Fig. 7 Volatility of networks over time in changing and static

environments. Data are drawn from sampled individuals averaged

over 640 trials for each conditions; filled circles represent changing

environments, open circles static environments. Reproduction is

asexual, and K = 4, N = 1000, P = 100, l = 0.00317,

lA = 3.17 · 10)5, m = 0.2 and s = 1.
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or three alternative environments, the average speed of

adaptation increases. The authors link this evolution of

evolvability to modifications in certain constitutively

expressed genes, which they call ‘evolutionary sensors’.

Similarly, Kashtan et al. (2007) demonstrated that sev-

eral models of circuits could adapt faster after evolving

to a set of independently varying, modular goals. Our

study reinforces these earlier results, and presents the

first detailed exploration of the population genetics

underlying the evolution of evolvability. By testing the

effects of recombination, and analysing the evolutionary

dynamics of the mutations that change evolvability, our

results directly address controversial aspects of the

concept of evolvability. Finally, our study highlights a

simple, mechanistic connection linking a general aspect

of network structure to both evolvability and robust-

ness.

Our results achieve further relevance for biology by

illustrating a clear and useful way to think about

evolvability. Much of the discussion on evolvability has

focused on special cases with an intuitive relation to

selectable variation: mutator alleles (Sniegowski et al.,

2000; Earl & Deem, 2004; Sniegowski & Murphy, 2006)

or Hsp90 (Rutherford & Lindquist, 1998; Wagner et al.,

1999), for example. These instances may be individually

important, but they do not sum to a general and

convincing foundation for a theory of evolvability. By

contrast, our model suggests that the potential for

evolvability to evolve derives from basic properties of

the GP map: epistatic interactions among loci, pleiotropy

allowing a single mutation to potentially change several

traits and the existence of clusters of similar genotypes

that generate the same phenotype. A unique aspect of

our results is that each site appears to contribute to

evolvability, and consequently has the potential to be

shaped by its evolution. As the GP map is degenerate as

well as epistatic, this potential can be realized by neutral

changes at many sites. This degeneracy is ubiquitous in

other simple models and at many levels of biological

organization (Wagner, 2005), and creates the opportu-

nity for variability to evolve (Ancel & Fontana, 2000;

Plotkin & Dushoff, 2003; Meyers et al., 2005). Our results

therefore suggest that the significance of evolvability is

not limited to a few specialized traits, suggest as mutator

alleles, but may encompass all loci with degeneracy and

epistatic interactions.

One significant consequence of the genome-wide basis

of evolvability in this model is that recombination cannot

easily separate beneficial changes from the determinants

of evolvability. A simple explanation for this empirical

result is that the fitness benefit of each adaptive change

depends on the state of several other loci. Consequently,

beneficial mutants cannot fix independent of their

genetic background. This contrasts sharply with the

dynamics of mutator alleles, as referenced above: muta-

tor alleles do not interact epistatically with beneficial

changes they contribute to, and so can be easily separated

from fixing alleles. This clear difference between the

behaviour of mutator allele models, and the results

presented here and in an earlier paper (Draghi & Wagner,

2008), illustrate the importance of understanding the

role of the GP map in evolvability.

The demonstration that evolvability can have a broad

genetic basis also has major implications for understand-

ing evolutionary patterns. For example, Wagner (2008)

contends that phenotypes are less ephemeral, over

evolutionary time, than their corresponding genotypes,

and are therefore a more appropriate focus for the

evolution of variability. However, our analysis of the

quantity we called ‘network excitation’ suggests that

properties of the genotype may evolve and persist at

much longer timescales than phenotypes. Our results

show that network excitation, an aggregate property of

many genes, is on average shaped in a systematic manner

to reflect hundreds of generations of evolutionary

dynamics. Network excitation provides a concrete exam-

ple of the difference between genotype and genetic

architecture, and highlights the evolutionary relevance

of gene networks.

The current results, along with previous simulation

studies (Meyers et al., 2005; Draghi & Wagner, 2008),

demonstrate that random environmental change favours

specific genotypes with less restricted patterns of vari-

ability. Isotropic variation at the phenotypic level is often

a default expectation, but as Salazar-Ciudad (2006, 2007)

and others have pointed out, genotypes that can produce

such unbiased variation must be very rare. By examining

thousands of gene networks, those networks that can

produce beneficial mutations in many environments

were seen to be exceptional. However, these evolved

forms are only remarkable in comparison with their

ancestors – without a sample space of possible GP maps,

this derived evolvability is hidden. Although it is obvious

that evolvability is a relative measure, this study reveals

the benefits of studying evolvability using a model with a

defined space of possible GP maps.

The results presented in Fig. 7 support the idea that

evolvability negatively correlated with mutational

robustness, or the tolerance of the phenotype to changes

in the genotype. Although several studies have shown

that evolution can increase robustness in gene network

models (Wagner, 1996; Siegal & Bergman, 2002; Berg-

man & Siegal, 2003; Azevedo et al., 2006; Siegal et al.,

2007), our study is the first to demonstrate that the

opposite can also occur. This result coincides with the

intuitive idea that robustness and evolvability are fun-

damentally in opposition, but also contradicts a number

of recent studies suggesting that robustness can promote

evolvability (de Visser et al., 2003; Bloom et al., 2006;

Lenski et al., 2006; Aldana et al., 2007; McBride et al.

2008; Wagner, 2008). As basic questions surrounding

robustness and evolvability have begun to be resolved,

these evolutionary influences on variability must be

modelled and observed acting in concert. Several recent
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attempts to unify robustness and evolvability have

illustrated the complexity of this question, and its

significance for evolutionary understanding (Meyers

et al., 2005; Wagner, 2008). Important extensions of the

current study include exploring the evolvability–robust-

ness relationship over a wide range of population

parameters and evolutionary scenarios to appreciate

how these traits co-evolve.

Summary

Our results illustrate how the regulatory interactions

among genes could evolve to substantially alter evolv-

ability and robustness. Evolvability is shown to generally

increase when the environment occasionally changes,

and this pattern does not depend on group-level selec-

tion, the absence of recombination or special traits such

as mutator alleles. The key to this evolution of evolv-

ability lies in the GP map, which evolves to increase the

mutational accessibility of alternative phenotypes. These

results explicate how evolutionary forces can shape

evolvability, and suggest that selection on evolvability

may shape gene networks in nature.
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Appendix 1 – exploring variation in model
parameters

We first addressed the influence of population size and

the period of environmental change. Table 1 shows the

mean increase in E25 after 30 epochs of evolution and the

significance of this difference. Because distributions of

E25 are typically skewed, we apply the nonparametric

Wilcoxon signed-rank test to the pairs of measurements.

These results confirm that evolvability increases in

populations of at least 200 individuals, and suggest that

larger populations generally enhance this increase.

Evolvability also evolves for a range of period lengths,

although we cannot judge the interaction of period and

population size. Kawecki (2000) suggests that very small

period lengths can lead to the evolution of canalization,

and consequently a decrease in evolvability. However,

we observed a significant increase in evolvability when

P = 30, suggesting that our results are robust to changes

in period.

Table 2 shows the robustness of our result to changes

in mutation rates. Evolvability significantly increases

with the exception of two cases with very high mutation

rates. Evolvability also evolves when network topology

cannot evolve, i.e. lA = 0. Table 3 establishes that our

main result is not sensitive to changes in m, the size of

mutational changes to connection weights.

Finally, we confirm that evolvability can also evolve in

larger networks. As K increases, computational require-

Table 1 The influence of population size and epoch length on the

evolution of evolvability.

Epoch

period (P)

Population size (N)

100 200 1000 10 000

30 0.02 (ns) 0.077 (++) 0.151 (+++) 0.248 (+++)

100 0.059 (+) 0.142 (+++) 0.205 (+++) 0.294 (+++)

300 0.015 (ns) 0.107 (++) 0.202 (+++) 0.213 (+++)

1000 0.025 (ns) 0.051 (+) 0.079 (+) 0.106 (+++)

Simulations were performed with 80 replicates for l = 0.00317,

lA = 3.17 · 10)5, m = 0.2, s = 1 and N and period as indicated.

Numbers indicate the mean increase in E25 from the initial genotype

to the end of epoch 30. Symbols indicate level of significance of

a Wilcoxon signed-rank test: ns, P ‡ 0.01; +, 0.01 ‡ P > 10)4;

++, 10)4 ‡ P > 10)8; +++, P £ 10)8.
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ments quickly become prohibitive – network complexity

increases geometrically with K, and the number of

environments to assay for evolvability increases expo-

nentially. We therefore only examined networks with 12

and 20 nodes for a single set of parameters. We also limit

the number of iterations during a network’s development

to 30 for 12 nodes and 100 for 20 nodes. In theory, 12-

node networks could take 4096 iterations to converge,

and 20-node networks might require over one million.

However, raising these limits increased the fraction of

genotypes with stable phenotypes by negligible amounts,

suggesting that these limits are a very close approxima-

tion. To facilitate comparisons across network sizes, we

maintained a consistent per genome mutation rate. For

K = 12, N = 1000, l = 3.526 · 10)4, lA = 3.526 · 10)6,

P = 100, m = 0.2, s = 1 and reproduction was asexual.

For K = 20, l = 1.27 · 10)4, lA = 1.27 · 10)6 and other

parameters were the same.

For K = 12, E25 increases over 60 epochs from an

average of 0.075–0.170, which was highly significant

(Wilcoxon signed-rank test, two-tailed, 60 replicates,

V = 97, P = 1.765 · 10)9). For K = 20, E25 increases over

the same period from an average of 0.052–0.110, which

was also significant (Wilcoxon signed-rank test, two-

tailed, 60 replicates, V = 100, P = 2.022 · 10)9). Note

that the E25 of the initial, random genotypes declines as

K increases, perhaps reflecting the decrease in the per site

mutation rate with increasing number of sites. Despite

this decrease in initial E25, the increase in evolvability

remains strongly significant.
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Table 2 The influence of mutation rates on the evolution of

evolvability.

Weight mutation rate (l)

7.92 · 10)4 3.17 · 10)3 1.27 · 10)2

Topology mutation rate (lA)

0 0.125 (++) 0.218 (+++) 0.214 (++)

3.17 · 10)5 0.185 (+++) 0.205 (+++) 0.233 (+++)

3.17 · 10)4 0.117 (++) 0.145 (+++) 0.149 (+++)

3.17 · 10)3 0.053 (+) 0.028 (ns) 0.025 (ns)

Weight mutations change an existing connection by a maximum of

m; topology mutations insert and delete connections. Simulations

were performed with 80 replicates for m = 0.2, N = 1000, P = 100

and s = 1. Numbers indicate the mean increase in E25 from the initial

genotype to the end of epoch 30. Symbols indicate level of

significance of a Wilcoxon signed-rank test: NS, P ‡ 0.01;

+, 0.01 ‡ P > 10)4; ++, 10)4 ‡ P > 10)8; +++, P £ 10)8.

Table 3 The evolution of evolvability is robust to changes in l
and the size of weight mutations, m.

Weight mutation rate (l)

1.58 · 10)3 3.17 · 10)3 6.34 · 10)3

Mutation size (m)

0.1 0.123 (+++) 0.154 (+++) 0.203 (+++)

0.2 0.19 (+++) 0.205 (+++) 0.23 (+++)

0.5 0.22 (+++) 0.255 (+++) 0.186 (+++)

Simulations were performed with 80 replicates for lA = 0.0000317,

N = 1000, P = 100 and s = 1. +++ indicates a value of P £ 10)8 for

a Wilcoxon signed-rank test, whereas the number in each cell is

the mean increase in E25 from the initial genotype to the end of

epoch 30.
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