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Phenotypically plastic genotypes express different phenotypes in different environments, often in adaptive ways. The evolution

of phenotypic plasticity creates developmental systems that are more flexible along the trait dimensions that are more plastic,

and as a result, we hypothesize that such traits will express greater mutational variance, genetic variance, and evolvability.

We develop an explicit gene network model with three components: some genes can receive environmental cues about the

adult selective environment, some genes that interact repeatedly to determine each others’ final state, and other factors that

translate these final expression states into the phenotype. We show that the evolution of phenotypic plasticity is an important

determinant of mutational patterns, genetic variance, and evolutionary potential of a population. Phenotypic plasticity tends to

lead to populations with greater mutational variance, greater standing genetic variance, and, when the optimal phenotypes of

two traits vary in concert, greater mutational and genetic correlations. However, plastic populations do not tend to respond much

more rapidly to selection than do populations evolved in a static environment. We find that the quantitative genetic descriptions

of traits created by explicit developmental network models are evolutionarily labile, with genetic correlations that change rapidly

with shifts in the selection regime.

KEY WORDS: Evolutionary constraint, evolution of mutational covariance, evolvability, genetic covariance matrix, phenotypic

plasticity.

Most organisms have evolved some degree of phenotypic plastic-

ity (West-Eberhard 2003). If this phenotypic plasticity is adaptive,

the change in phenotype produced in that environment makes the

organism more fit than it would have been with an average pheno-

type. For example, when plants are exposed to dry conditions, they

may close stigmata or improve water-use efficiency, increase root-

shoot ratios, and/or change leaf shape, etc. Such plasticity is pre-

dicted to have substantial effects on the evolutionary potential of

a species. Theory suggests that plastic genotype-by-environment

interactions may result in a release of heritable variation in a novel

environment (Hermisson and Wagner 2004; Fierst 2011), and may

ultimately shape the response to selection in the new environment

(Price et al. 2003). Plasticity may also aid speciation and change

ecological interactions (Agrawal 2001; Miner et al. 2005; Pfennig

et al. 2010; Thibert-Plante and Hendry 2010). In computer models,

nonadaptive (Espinosa-Soto et al. 2011) and adaptive plasticity

(Fierst 2011) have each been shown to accelerate the evolution of a

developmental network to a new environment. From the opposite

perspective, the evolution of robustness to environmental changes

has been shown to decrease mutational effects and slow evolu-

tionary rates (Ancel and Fontana 2000). Plasticity can buffer the

deleterious effects of novel environments, permitting organisms
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to survive, and later adapt (West-Eberhard 2003). An appropriate

plastic response to a novel environment can increase the probabil-

ity that an organism can persist in that environment, whereas

an inappropriate response can reduce its chances of success

(Price et al. 2003).

However, despite a number of theoretical studies, the role of

plasticity in potentiating and shaping adaptation remains contro-

versial (de Jong 2005). One explanation for this lingering con-

troversy is that many theoretical efforts to understand the effects

of plasticity on evolution use a statistical quantitative genetics

approach (e.g., Via and Lande 1985; de Jong 2005; Lande 2009),

rather than mechanistic models (Pigliucci et al. 2006). Key ques-

tions about evolved plastic responses, such as how much phe-

notypic diversity is revealed when a population encounters an

environment outside the range of its recent history, cannot be ade-

quately studied without a mechanistic model of how environmen-

tal inputs shape phenotypes. Although the interactions between

plasticity and adaptation have been explored in several simple

models of development (Ancel and Fontana 2000; Espinosa-Soto

et al. 2011; Fierst 2011), these studies have yet to apply these

mechanistic models to quantitative-genetics questions, such as

the evolution of reaction norms, genetic variance–covariance ma-

trices, and mutational correlations.

In this article, we explore the possibility that phenotypic

plasticity may facilitate the emergence and maintenance of ge-

netic variance, and that this genetic variation may be greatest

along the dimensions most often favored in a heterogeneous envi-

ronment with plasticity. Heterogeneous environments will often

vary in their trait optima for multiple traits. If phenotypic plastic-

ity evolves for these traits, then the developmental system must be

flexible enough to allow variations in those trait combinations in

response to the environment. As a result, we hypothesize that an

adaptively plastic developmental system will vary more readily

along dimensions for which trait optima vary, and we therefore

expect that even random changes in genotypes will be more likely

to have larger effects along those same dimensions. Therefore, in a

population with adaptive developmental plasticity, the major axes

of genetic variance and of the mutational covariance matrix are

expected to be correlated with the major axes of correlated plastic

divergence among environments. We therefore propose that the

variances and covariances of the phenotypic effects of both new

mutations and standing variation may evolve as an indirect effect

of selection on the developmental system to promote adaptive

plasticity. We test this hypothesis with an explicit developmental

model of trait development and evolution.

Evaluating the effects of plasticity on well-studied measures

of genetic variation allows us to apply quantitative-genetics the-

ory to understand the evolvability of plastic populations. Over

short periods, a powerful way of studying the evolutionary poten-

tial of a population is to investigate the magnitude and shape of

the additive genetic variance–covariance matrix, G, whereas over

longer periods, the properties of new mutations shape evolvabil-

ity. The amount of genetic variance of each trait and the genetic

covariance between traits has been increasingly studied over the

last few decades. In the 1980s, Arnold, Lande, and Wade (Lande

1979; Lande and Arnold 1983, Arnold and Wade 1984a,b) laid the

foundations for studying natural selection in the wild using partial

regression models and genetic covariance matrices. These articles

showed that the strength and multivariate pattern of selection on

phenotypic traits could be measured in the wild, and many, many

researchers have followed suit with such measures (Kingsolver

et al. 2001; Kingsolver and Pfennig 2004). However, to predict

the response to multivariate selection, it is also necessary to know

the additive genetic variance of each trait, and importantly, the

additive genetic covariance of pairs of traits. These additive ge-

netic variances and covariances are collected into the so-called

G matrix, with the variances on the diagonal and the covariances

in the off-diagonal values. In the absence of perfect information

about the frequencies and effects of all alleles in a population,

prediction of response to selection requires G. More challeng-

ingly, it is necessary to know the value of G for each generation

that selection may be applied. If G is relatively constant over

time, then it suffices to measure it once, but if G evolves, a single

measure of G may be increasingly misleading. Our knowledge of

the behavior of G lags behind our understanding of selection, in

part because G is more difficult to measure. Nevertheless, over

recent years, much progress has been made in studying G both

empirically and in theory (Steppan et al. 2002). We know that G
can be changed by all the major evolutionary forces, such as cor-

relational selection (Jones et al. 2003, 2004), drift (Lande 1980;

Phillips et al. 2001), migration (Guillaume and Whitlock 2007),

mutation (Jones et al. 2007), and recombination (because genetic

covariances are often in part caused by linkage disequilibrium).

When it has been measured, we know that G can change over time

(Lofsvold 1986; Kohn and Atchley 1988; Paulsen 1996; Arnold

and Phillips 1999; Roff et al. 1999; Roff and Mousseau 1999;

Waldmann 2000; Begin and Roff 2001), but is sometimes rela-

tively constant (Lofsvold 1986; Shaw and Billington 1991; Spitze

et al. 1991; Platenkamp and Shaw 1992; Brodie 1993; Podolsky

et al. 1997; Roff et al. 1999; Waldmann 2000; Begin and Roff

2001, 2003, 2004).

Although G and the associated matrix M of mutational vari-

ances and covariances are powerful conceptual tools, they are

ultimately only statistical summaries of data, and cannot ex-

plain the mechanisms behind covariances. A complete under-

standing of how plasticity might relate to evolvability requires a

model of development as well as the quantitative-genetics model

of evolution. The purpose of such a developmental model is

not to depict accurately all aspects of biological development,

but to provide a rich testing ground for evaluating how the
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genotype–phenotype relationship interacts with selection

(Wagner and Altenberg 1996). As a step toward synthesizing mod-

els of evolution with those of development, we adapt a model, pre-

viously used to study robustness and evolvability (Wagner 1996;

Bergman and Siegal 2003; Draghi and Wagner 2009), to the ques-

tion of how plasticity shapes and is shaped by evolution. Other

studies have applied variants of this model to explore how plastic-

ity shapes evolvability (Espinosa-Soto et al. 2011; Fierst 2011),

but have not yet applied this approach to a quantitative-genetics

framework. We extend the network model to incorporate two new

features: explicit information from the environment and devel-

opment of observable quantitative traits. The resulting model is

allowed to evolve plasticity through the interactions of its “genes,”

without the contrivance of locithat modulate plasticity by fiat. As

a result, the model is far less likely to encode a priori assumptions

about the nature of plasticity, because the plastic behavior evolves

from the interactions of a potentially large and complex devel-

opmental network. We therefore combine previously disparate

approaches, using a developmental network model that can be

described in quantitative genetic terms. This synthetic approach

allows us to describe results in terms of empirically measurable

parameters, whereas at the same time testing quantitative genetic

assumptions about the stability of these evolutionary parameters.

Methods
GENE NETWORK MODEL

Our genotype–phenotype model is inspired by the idea of a net-

work of transcription factors that regulate each others’ expression

levels through an iterative process (see Fig. 1 for a cartoon version

of the developmental process). In short, a set of ε genes receive

information from the environment. A total of S genes, including

the ε, then develop through a 20 time-step cycle, and each gene

potentially influences the expression state of all S genes, including

itself. Each regulatory connection is defined by two separate val-

ues: a binary state that determines if the connection is active, and

a real-valued weight that scales the gene’s effects. After the itera-

tive process, the steady-state expression levels of the S − ε genes

that did not directly receive environmental input are summed,

weighted by an evolved trait-specific effect matrix, to determine

the phenotypic value of two traits. Each trait is subject to sta-

bilizing selection, with an optimum determined by the current

environment. This model is loosely based on a model presented

by Andreas Wagner (1996). However, in our variant, we make

three changes: we use continuous, rather than discrete, expres-

sion levels; the steady-state expression levels do not themselves

constitute the phenotype, but instead determine several quantita-

tive traits; and an informative environmental cue helps determine

the phenotype.

Figure 1. A schemata of the developmental process. A total of

20 genes are potentially involved in an interactive network, where

the expression of each gene product at each time point is de-

termined by the sum of the effects of all interacting genes in

the network, weighted by the specific pairwise effect of gene i

on gene j. Four of these 20 genes (ε1 through ε2) may also re-

ceive information from the environment. After 20 iterations, each

of the 16 genes that do not directly receive environmental cues

(S5–S20) can affect the value of two traits, where the weight

of the network gene on each trait is determined by a unique

gene.

Each haploid genotype is characterized by four matrices. An

S × S matrix of binary elements, Y, determines if gene j regulates

gene i. (For all of the calculations we do here, S = 20.) y is an S ×
S matrix containing the signs and continuous-valued weights of

these regulatory influences. Similarly, Z is a 2 × (S − ε) matrix of

binary elements determining if gene product j contributes directly

to trait i, and z is a matrix with the signs and continuous-valued

weights of these contributions of the jth gene to trait i.

We considered three evolutionary scenarios, which we call

static, heterogeneous, and plastic. In the static case, we model a

scenario in which the trait optima, (φ1,φ2), are fixed. In both the

heterogeneous and plastic scenarios, the trait optima change each

generation, as a result of a draw from a uniform distribution for the

value of the selective environment. To model strong correlation

between the two trait optima in a changing environment, we draw

a value uniformly from the interval [ 1
2
√

2
, 3

2
√

2
) and use this as

the optimal trait value for both traits. Therefore, φ1 = φ2 in these

evolutionary scenarios.

Additionally, only in the plastic scenario, the state of the

environment is indicated by an environmental cue, represented by

a real number c. Cues are directly proportional to the trait optima

and are scaled to vary between – 1
2 and 1

2 . Therefore, populations in

both the heterogeneous and plastic scenarios experience frequent
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environmental change, but only those in the plastic scenario have

the potential to evolve adaptive plasticity.

Each of the S genes in the network has a continuous-valued

state xi,t for gene i at time t, ranging from 0 to 1, which represents

the transcriptional activity of that gene. Each gene is initially ac-

tive; then, the states in each subsequent time steps are determined

by summing the regulatory contributions of the S genes (autoreg-

ulation is permitted) and environmental signals, and transforming

this sum by a sigmoid function. If gene j regulates gene i (i.e.,

Yij = 1), then xj,t and yij multiply to influence xi,t+1:

xi,t+1 =
⎛
⎝1 + exp

⎡
⎣−

S∑
j=1

Yi j yi j xi,t + Ei c

⎤
⎦

⎞
⎠

−1

,

where Ei is 1 if i ≤ ε and 0 otherwise.

Although some networks exhibit long transients or oscilla-

tions, in practice many networks quickly approach a steady-state

expression pattern. After τ = 20 time steps, we judge the stability

of an expression pattern by comparing the root mean squared dif-

ference between the vectors xτ−1and xτ. If this error is less than

a proscribed threshold (we used a threshold of 0.01), we consider

the network to have reached a steady state and compute its phe-

notype; otherwise, that individual offspring is defined to be unfit

and is killed, and a new individual is immediately created to take

its place from randomly chosen parents.

The two traits comprising the phenotype are computed as

the sums of positive and negative contributions from the set of

all transcription factor gene products, excluding those that di-

rectly receive information from the environment. Zij determines

if gene j contributes to trait i, and this contribution is the prod-

uct of the steady-state expression of gene j and the weighting

factor zij:

ti =
S∑

j = ε + 1

Zi j zi j x j,τ.

EVOLUTION SIMULATIONS

Evolution is based upon the Wright–Fisher model: populations

of N = 1000 individuals reproduce in discrete generations with

selection on both fertility and survival. When an organism is born,

it acquires a number of mutations that are Poisson distributed with

mean U = 0.02. With probability α = 0.2, the mutation changes

the architecture of a network—adding or removing interactions—

by mutating Y or Z. Such a mutation will remove an extant inter-

action or create an absent one; note that the corresponding value

of yij or zij will be retained and continues to evolve. Interactions

within the network (Y) and from the network to traits (Z) are

equally likely, per capita, to be selected for mutation. With prob-

ability 1 − α, mutation changes the weight of a randomly chosen

interaction by adding a perturbation from a Gaussian distribution

with mean at zero and standard deviation of σm . By default we

used a value of σm = 0.5.

Fitness is determined by first calculating the Euclidian dis-

tance, d, between the trait vector t and the vector of trait optima,

φ. The factor ω scales the relationship between fitness w and d

as:

w = exp

(
− d2

2ω

)
.

By default, we used ω = 0.2, but in the supplemental material

we show results for weaker selection at ω = 0.8. To provide some

intuition for these parameter values, we can calculate how fit

an phenotype at the average of the range of optima would be if

the current environmental optimum was at either extreme of that

range. For ω = 0.2, this phenotype would be about 29% as fit as a

perfectly adapted organism, whereas for ω = 0.8, the phenotype

would be about 73% as fit as the optimum phenotype.

To produce a new individual, the first parent is chosen with

probability w/w, where w is the mean fitness in the current gen-

eration. The second parent is chosen in the same way, and is

redrawn if the first parent is selected again. One haploid offspring

is produced by recombining the parents’ genotypes, followed by

mutation and development in the environment appropriate for the

offspring population. If an offspring’s phenotype is unstable—that

is, fails to reach an equilibrium within τ = 20 time steps—then

it is assumed to be lethal, and a new combinations of parents is

selected. This procedure is repeated until N stable offspring are

produced, and combines fertility selection on the phenotype with

viability selection against individuals with unstable networks.

The factors that determine how the expression of gene j in-

fluences the expression of gene i are imagined to be cis-regulatory

elements. When recombination accompanies reproduction, these

factors are therefore inherited in complete linkage. Each set of

cis-regulatory elements is assumed not to be linked to any other

set. Therefore, for each i, the rows of the Y and y matrices are

inherited together from one parent, and a Bernoulli trial with

probability 0.5 determines from which parent each pair of rows

is inherited. The regulatory factors in the Z and z matrices are

not assumed to be adjacent in the genome; therefore, each fac-

tor Zij is inherited, along with it corresponding entry zij, from an

independently chosen parent.

Simulations begin with a population of clones copied from

a single individual. This individual is chosen randomly for each

replicate, subject to two constraints: (1) the genotype must pro-

duce a stable phenotype in the initial, randomly chosen environ-

ment, and (2) the genotype’s fitness in this environment must be

above a threshold, set to 0.00005 in all simulations we present.

The use of a threshold prevents unproductive simulations with

miniscule fitness values, which would also be subject to numeri-

cal round-off errors.
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Several default parameters, including the minimal starting

fitness and the distance of the optimal phenotypes from the coor-

dinate origin, were chosen by experimentation. To maximize our

power to detect influences on G and M while avoiding bias, we

selected the parameter combination that produced distributions of

angles of G and M that were closest to uniform in the static and

heterogeneous scenarios, without regard to these distributions in

the plastic scenario.

MEASURING THE M AND G MATRICES

The mutational variance–covariance matrix M was measured by

introducing single mutations to an individual genotype and mea-

suring the change in each trait relative to the unmutated genotype.

The mean of the squared differences for trait 1, averaged across

various mutations assayed in all of the individuals in a single

population, is the variance in trait 1; the mean of the product

of a mutation’s effect on trait 1 and on trait 2, averaged across

the individuals in one population, is the covariance between

trait 1 and trait 2. M was measured in multiple environments,

each characterized by a value of the environmental cue, c, when

appropriate.

G was measured as the covariances between the trait 1 in

offspring and trait 2 in parents. To minimize biases due to selection

and unequal family sizes, we generated one offspring from each

of the N(N − 1)/2 possible parental combinations and compare

the trait values of the offspring to the average trait value of its

two parents. Because N = 1000 in all presented data, G was well

estimated by this procedure. The additive genetic covariance of

traits 1 and 2 is calculated from the average covariance of trait 1

in offspring and 2 in parents and vice versa. We also do not allow

mutation during these reproductive events, and discard parent and

offspring combinations if any of the three are unstable in the test

environment. Like M, G was measured separately in each relevant

environment.

EVOLVABILITY ASSAYS

We measure evolvability by the mean change, of either the pheno-

type or fitness, of a population in response to a selective pressure.

We assay evolvability with selective gradients oriented in seven

directions in trait space. Rather than define optimal phenotypes,

we redefine fitness in these assays to promote continual adaptive

change in both traits. Fitness in these assays is determined by two

additional parameters, a measure of selective strength s, and a

measure of the orientation of the gradient, θ, as follows:

fitness = (1 + s)d ,

where

d =
(

x − 1√
2

)
sinθ +

(
y − 1√

2

)
cosθ.

Table 1. Mean genetic and mutational variances and correlations

for the parameter values in Figure 2.

Mean Mean Mean Mean
genetic genetic mutational mutational
variance correlation variance correlation

Static 0.00045 0.03 0.0024 0.01
Heterogeneous 0.00051 0.04 0.0025 0.01
Plastic 0.00098 0.61 0.0034 0.30

In each simulation, a population evolved under the condi-

tions described above is generated, then copied for each replicate

simulation. Simulations are performed for θ = 45◦, 30◦, 15◦, 0◦,

−15◦, −30◦, −45◦, which range from selection along the axis

of plasticity when θ = 45◦, to selection orthogonal to that axis

when θ = −45◦. For example, the θ = 45◦ scenario selects for

unlimited but proportional increases in both traits, whereas the

θ= 0◦ scenario selects for stasis in trait 1 and an unlimited increase

in trait 2. Each of these seven scenarios is replicated 30 times

for each evolved population, and each population evolved for

100 generations.

Results
The populations were able to evolve to relatively high fitness

in nearly all cases. When the organisms were allowed mean-

ingful environmental cues in a heterogeneous environment over

sufficiently long time, they usually evolved adaptive phenotypic

plasticity (Fig. S1), by which they tended to match the environ-

mental optimum fairly well for environments intermediate to the

observed range and not quite as well for less common extreme en-

vironments. Outside of the range of environments in which they

evolved, the plastic responses to environmental cues tended to

correlate with the direction of plasticity within the evolved range,

although these plastic responses were smaller and more variable

than the evolved response to previously experienced cues.

The patterns of genetic variance and covariance depended on

whether the selective optima changed and on whether the organ-

ism received cues about the optima. In populations that evolved

phenotypic plasticity, the amount of genetic variation for each trait

was in average increased by about a factor of two for these param-

eters and for those in the examples in the Supporting Information

(Fig. 2 and Table 1). Figure 3 shows the genetic correlations of

the G matrix for each case. G for static cases has some varia-

tion in magnitude and shape, but on average the G matrices for

the static cases tend to have genetic correlations between the two

traits near to zero. With environmental heterogeneity (but without

plasticity), the correlational patterns of G are similar to the static

case. Heterogeneity in selection is not enough, in this model, to

EVOLUTION SEPTEMBER 2012 2 8 9 5
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Figure 2. Distribution of VA for populations evolved to a single

optimum (static) and those with evolved with constantly chang-

ing optima and informative cues (plastic). Populations evolved for

50,000 generations before measurement. Population size was N =
1000, genomic mutation rate was U = 0.02, and the strength of

selection, ω, was 0.2; see Methods for details. Over 800 replicates

were performed for each condition.

Figure 3. Distribution of genetic correlations for populations

evolved to a single optimum (static) and those evolved with con-

stantly changing optima and informative cues (plastic). Parameters

are the same as in Figure 2.

strongly structure G. However, if the organisms receive useful en-

vironmental information, such that they evolve plasticity for the

pair of traits, the G matrix tends to be exaggerated along the same

dimension that the optima vary, with an average genetic corre-

lation for these parameters of approximately 0.6. Plasticity does

change the structure of G, making the major axis of G most likely

to occur along the lines of plastic response. These differences

between populations evolved with plasticity in heterogeneous en-

vironments and those evolved in static environments were also

seen when populations evolved for longer (250,000 generations)

under both strong (ω = 0.2) and weaker (ω = 0.8) selection

(Figs. S2 and S3).

Figure 4. Distribution of mutational variance for populations

evolved to a single optimum (static) and those evolved with con-

stantly changing optima and informative cues (plastic). Parameters

are the same as in Figure 2.

Figure 5. Distribution of mutational correlations for populations

evolved to a single optimum (static) and those evolved with con-

stantly changing optima and informative cues (plastic). Parameters

are the same as in Figure 2.

The pattern of mutational effects is similar: the amount of

mutational variance is greater for populations with plastic devel-

opmental systems compared to those with stable environments

or even those with heterogeneous selection without reliable en-

vironmental cues (Table 1). These increases in mutational vari-

ance are larger earlier in the evolutionary history of the plastic

species (compare Figs. 4 and S2). Moreover, evolution of plas-

ticity is correlated with evolution of developmental systems in

which mutation effects tend to be greatest along the dimension

of that plasticity (see Fig. 5). Although the mutational covari-

ance of populations evolving in the static environment tends to

be close to zero under these conditions, in plastic populations the

mutational correlations are typically high (on average PM = 0.3)

(Fig. 5), and the mutation covariance matrices have greatest vari-

ation in the direction of plasticity. Mutational correlations of

the starting populations are indistinguishable from zero (static:

2 8 9 6 EVOLUTION SEPTEMBER 2012



evo_1649 evo2009v2.1.cls (2012/05/18 v1.1 Standard LaTeX document class) 8-14-2012 :1007

PHENOTYPIC PLASTICITY FACILITATES MUTATIONAL VARIANCE, GENETIC VARIANCE, AND EVOLVABILITY

t = 0.77, df = 399, P = 0.44; plastic: t = −0.50, df = 399, P =
0.62). These patterns in mutational correlations are also found in

populations that evolved for longer (250,000 generations) under

both strong (ω= 0.2) and weaker (ω= 0.8) selection (Figs. S2 and

S3). Thus, as we hypothesized, the developmental system evolves

under plasticity to vary most in the direction that is adaptive via

plastic response to changing optima.

To understand the effects of these changes to the developmen-

tal system on the future evolutionary potential of the populations,

we investigated the change in mean fitness over 100 generations

in various directions in trait space. Figure S4 shows the change in

phenotype caused by plasticity immediately upon introduction to

a new environment, where the traits undergo directional selection,

in some cases for different trait combinations from those that were

previously favored. If the new optimum diverges from the old op-

timum along the major axis of previous environmental variation,

then the population gets a preadaptive shift due to plasticity that

tends to be in the right direction (see Fig. S4).

In a complex model such as this, the genetic underpinnings of

variability evolve along with the phenotype, such that evolvability

changes during the duration of the experiment. We therefore ex-

amined the mean change in fitness over durations ranging from a

single generation to 100 generations. In all cases, we average the

log mean population fitness at the focal time with the log mean

fitness at t = 0, to avoid counting plastic responses to the cues as

evolved changes.

After one generation, plastic populations evolve significantly

more than static or heterogeneous populations at all angles except

−30◦ and −45◦. At later generations, plastic populations have a

small advantage when evolved under strong selection for shorter

times (Fig. 6), but not under weaker selection for 250,000 gen-

erations (Fig. S5). In addition, all populations adapt better when

the fitness landscape favors an increase in one trait alone (angles

near 0◦). These results confirm that the greater variability of plas-

tic populations translates into increased evolvability in a range

of directions, particularly when the trait combination selected for

corresponds to the axis of plastic variability. Additionally, the

results suggest that not all variation is pleiotropic. Figure S6 con-

firms that even in plastic networks with a major axis of pleiotropic

variability, mutants with strong effects on a single trait alone are

still common. It is likely that the presence of these single-trait mu-

tations in all networks contributes to the boost in evolvability at 0◦.

The greater variability in plastic populations can be parsed

into two components: the probability that a mutation changes the

phenotype at all, and the mean size of the perturbation of mu-

tants that do have an effect. Although the former is often used

as a proxy for mutational robustness, both measures capture dif-

ferent aspects of a genotype’s sensitivity to mutation. Here, the

mean proportions of mutations with phenotypic effects were very

similar among one hundred populations evolving in static, het-

erogeneous, or plastic conditions (averaged over the cues for the

seven evolvability scenarios): 0.604 in plastic populations versus

0.597 (P = 0.009) in static and 0.596 (P = 0.004) in heterogeneous

for populations under strong selection (ω = 0.2). In contrast, the

mean phenotypic effect of consequential mutations was 0.047

phenotypic units, much higher than the averages for static (0.032,

P < 3 × 10−16) and heterogeneous (0.032, P < 3 × 10−16). This

result suggests that plastic networks do not necessarily have more

essential connections, but that the organization of those connec-

tions differ from static and heterogeneous environment networks.

Intriguingly, we also found that mutations were no more likely to

affect both traits simultaneously in plastic populations, suggesting

that the observed mutational correlations in these populations are

caused by the magnitude of pleiotropic mutations, and not their

frequency (92.6% of mutations affecting one trait affected both

in plastic populations, vs. 92.5% [P = 0.15] for static and 92.4%

[P = 0.07] for heterogeneous).

Comparisons of the structures of networks from populations

evolved under static, heterogeneous, and heterogeneous with cues

(plastic) conditions reveal very few differences. We measured

network features of the most fit individual at generation 50,000

in 100 replicate populations for each of the three treatments, and

distinguished between the computation layer of a network—the S

interacting genes whose steady state determine the traits—and the

output connections that link the computation layer genes to the

traits. For each portion of the network, we measured the number

of active connections and the mean absolute value of the weight

of active connections.

These results show that the computation layers of plastic net-

works are very slightly more strongly interconnected than those

of networks evolved in static or heterogeneous conditions, but the

output layers have virtually identical connectivities. All P-values

are calculated with the Wilcoxon rank-sum test with continuity

correction, and no comparisons between static and heterogeneous

networks were significant. On average, 50.2% of the connections

between S genes were active in plastic networks, which was sig-

nificantly greater than the 49.4% (P = 0.018) in static networks

and 49.45% (P = 0.034) in heterogeneous networks. Similarly,

the mean weight of connections in plastic networks, 0.597, was

slightly but significantly greater than the mean in static (0.578,

P = 0.0007) and heterogeneous (0.583, P = 0.014) net-

works. However, the number of active connections from the

computational layer to the traits and their mean weights

was not significantly different between any of the three

scenarios.

Aside from these very minor structural differences, analy-

sis of the effects of mutations on the steady-state behavior of

the networks suggests an explanation for the greater phenotypic

variability of populations of plastic networks. We measured the

number of genes whose steady-state expression level was altered
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Figure 6. Evolvability depends on the direction of selection and the evolutionary history of the population. Log differences between

the mean fitness at generations t = 1, 10, 30, and 100 and the mean fitness at t = 0 (at the beginning of the evolvability assay) are

averaged for 250 replicate populations, such that any plastic responses to the new environments are not counted as evolution. Prior

to these evolvability assays, each of the replicate populations evolved for 50,000 generations in the static, heterogeneous (fluctuating

without cues), and plastic (fluctuating with cues) with standard parameters. Angle increases clockwise from the y-axis, such that 45◦

represents an environment selecting for an equal increase in both traits, and −45◦ selects for an increase in trait 1 and an equivalent

decrease in trait 2. Bars depict 95% confidence intervals.

by mutation, as well as the sum of the absolute value of those

perturbations in expression level. Although the average number

of genes perturbed by a mutation is only slightly greater in plastic

networks (9.65 vs. 9.54 for static [P = 0.0176] and 9.51 for het-

erogeneous [P = 0.018]), the mean effect of these perturbations

is twofold greater in plastic networks (summed absolute devia-

tion is 0.095 vs. 0.047 for static [P < 3 × 10−16] and 0.045 for

heterogeneous [P < 3 × 10−16]).

Taken together, these results suggest that plastic networks are

more phenotypically variable because the steady states of their

computational networks are much more sensitive to mutation.

Because each mutation may affect the steady-state expression

of many genes, each of which may contribute to either or both

traits, this sensitivity creates mutational variability both along the

45◦ axis and at adjacent angles. However, because there is little

signature of this sensitivity in the connectivity of the networks,

this sensitivity must result from the detailed wiring of the network.

Finally, we note that in these evolved plastic networks, the steady-

state expression levels of all of the S – E genes that may contribute

to phenotype change over the range of evolved cues (−0.5 to 0.5).

This confirms that, in our model, plasticity evolves not as a single

pathway within a fixed network but as a global feature distributed

over the dynamics of the entire network.

Discussion
Finding the reasons for the maintenance of biodiversity is one of

the key goals of evolutionary biology. Organisms vary because

they have different genotypes, because they are exposed to dif-

ferent environments, and because their different genotypes often

have different responses to various environments. Genetic vari-

ance ultimately derives from new mutations, but the effects of

these mutations depend on the details of the developmental sys-

tems of the organisms that carry them. In this article, we have

shown that the evolution of phenotypic plasticity in response to

environmental heterogeneity may in turn affect the nature of
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Figure 7. Total additive genetic variance (open circles) predicts

evolvability at short time scales, whereas total mutational vari-

ance (filled circles) predicts evolvability over longer periods. For

each of 250 populations at each of the seven test environments,

we calculated the average genetic variance and mutational vari-

ance and calculated the Spearman-rank correlations of these mea-

sures with the mean net log fitness improvement for various time

points after the population was challenged with a new environ-

ment. Each point integrates the total change in fitness up to that

time. Data shown are for plastic populations; data for static and

heterogeneous conditions qualitatively similar (see Fig. S7).

subsequent mutations, heritable standing variation, and future

evolution in the population. We suggest that a phenotypically

plastic response to multivariate selection will predispose the de-

velopmental system to make it easier to vary genetically for traits

affected by plasticity. As a result, the effects of mutation and

the genetic variance–covariance patterns of a population can be

skewed toward the axis of greatest plasticity. Populations that

have evolved plasticity may also respond initially to future se-

lection in new directions more rapidly than do populations that

are more static. However, the G matrix does not predict the rel-

ative response to selection for more than a very few generations

(Figs. 7 and S7). Developmental network models connect the ef-

fects of new mutations intimately to the evolutionary context of

those mutations, such that the effects of alleles can vary substan-

tially with the continued evolution of the developmental system.

As a result, the specific details of genetic covariance encoded in G
need not be very predictive of medium to long-term evolutionary

trajectories.

Quantitative genetic theory (Lande 1976; Schluter 1996) pre-

dicts that the response to selection will be biased toward the di-

rection that has the greatest genetic variance. From a G matrix

perspective, the direction in trait space with the greatest genetic

variance is the leading eigenvalue of the G matrix. This eigen-

value of G has been called gmax by Schluter (1996), who also

showed that over five known cases, the evolutionary divergence

of species or populations was usually more pronounced along the

direction predicted by gmax than expected by chance, as also found

by McGuigan et al. (2005) and Renaud et al. (2006). This is the

expected result if selection is constrained by genetic variance.

However, as Schluter (1996) points out, it is also the pat-

tern that we might expect if the evolution of G itself is changed

through the process of selection. At least two alternative pro-

cesses have been suggested to explain why gmax and divergence

may coalign. First, migration between diverging populations may

create genetic variation in the direction of divergence (Schluter

1996; Guillaume and Whitlock 2007). Second, correlational se-

lection within a population may favor a developmental system that

covaries along the pattern of fit genotypes (Schluter 1996). Jones

et al. (2007) investigated this second hypothesis, and showed that

the mutational covariance (and therefore the G matrix) can evolve

to give greater variation in the direction of ridges in the pattern of

correlational selection.

In this article, we have suggested a special case of this sec-

ond alternative, where selection is heterogeneous over time but the

optima of two traits are correlated. Phenotypic plasticity focuses

genetic variation along the line of selective correlation to a much

greater extent than the correlations between changing trait op-

tima experienced by the populations without predictive cues (see

Table 1). Thus, gmax may correlate with divergence not only be-

cause of the faster response to selection in that direction, but

because the functional relationship between the phenotype and

environment causes the genetic variation in a phenotypically plas-

tic population to align with the most likely direction of selection

in a new environment. However, we have found that these correla-

tions in standing genetic variation do not predict faster evolution

along major axes after about 20 generations.

Under most circumstances, we have found that the mutational

variance and the standing additive genetic variance for the traits

increases with plasticity relative to populations in heterogeneous

environments, but without plasticity. What might be the cause of

this extra variance? We believe that the increased variance is a

consequence of less effective stabilizing selection acting against

genotypes that deviate from the optimum in any given environ-

ment, so that selection is less effective in removing extreme phe-

notypes. We think there are three, nonexclusive possibilities for

why this selection is less effective with plasticity. First, selection

in any given environment is less strong when that environment

only appears infrequently. If the selective effects of alleles are

not perfectly positively correlated in all environments, then selec-

tion is weaker against any given allele on average than it would

be in a static environment (Kawecki 1994; Fry 1996; Holt 1996;
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Whitlock 1996; Snell-Rood et al. 2010). Second, if the fitness

effects of alleles are negatively correlated among environment,

then the average response to selection would be weaker than in

a static environment. (These first two hypotheses basically corre-

spond to the main hypotheses for the evolution of senescence; Holt

1996.) These two hypotheses seem unlikely to be the full expla-

nation, however, because we observe no corresponding increase

in variance in the populations that are exposed to heterogeneous

environments without environmental cues.

The third hypothesis is that the evolution of plasticity under

strong selection allows evolution of weaker deleterious pleiotropic

effects. The same alleles that may affect plasticity also have the

potential to affect the traits themselves. As a result, an allele with

strong favorable effects on plasticity may increase in frequency,

but that allele may also by chance decrease the mutational canal-

ization of the trait. If selection on plasticity is strong, the net

selective effect of the allele may be positive, even if it also some-

what reduces the fitness of the individual by increasing variance

around the optimal trait. These effects need not be universal, in

the sense that it may be possible to evolve a genotype that re-

sponds adaptively to environmental cues but without an increase

in mutational variation, and this genotype may be most fit. It

may be difficult for the evolving population to find such a geno-

type initially. We observe that the relative increase in mutational

variance is greater early in the evolutionary trajectories of these

populations and also greater when selection is strongest; both of

these observations are consistent with the hypothesis of a tran-

sient period of low robustness caused by the pleiotropic effects of

mutations selected for plasticity.

Genetic correlations between traits that respond to similar

environmental challenges may facilitate evolution to new en-

vironments. Consider Figure 8, where we plot the hypothetical

optima for two plant traits—water-use efficiency and root-shoot

ratio—that vary in their fitness across a moisture gradient. A plant

population that evolves over a range of environments that vary in

moisture will have trait optima for these two traits that vary pre-

dictably, with greater water-use efficiency and larger root-shoot

ratios favored in the less wet environment. However, if genotypes

from this population are transferred to an even dryer environ-

ment, the optimum will shift in a predictable way, toward even

larger water-use efficiency and greater root-shoot ratios. Given

that the trait optima in a given environment are determined by the

functional relationship between the phenotype and environmental

factors, it seems likely that in many cases the optimal phenotype

in a new environment will often (although certainly not always) be

roughly predictable from the variation in the optimum for a pre-

viously experienced set of environments. If this is the case, then

the correlation between gmax, mutational variance, and phenotypic

plasticity that we have shown lead us to predict that phenotypi-

cally plastic populations may harbor genetic variation—and the

Figure 8. Patterns of variation in optima among environments

may predict future paths of evolutionary divergence. For exam-

ple, the optimal phenotypes for water-use efficiency and root-

shoot ratio are monotonically related to water availability in an

environment, so the range of optima within a species’ experience

can be partially predictive of the optimum in a novel moisture

environment.

mutational patterns to create new variation—most greatly in the

direction in which that variation is likely to be required.

Although these correlations are in the right direction, and

they can be very strong in the ancestral environment, our tests of

evolvability show that such effects are short lived and only affect

the response to selection over a few generations. Such short-term

effects can be important, however, especially in a population that

has recently switched to a new environment. The persistence of

a species in a new or changing environment may depend on its

rate of adaptation, which is often limited by the amount of ge-

netic variance available (Bürger and Lynch 1995; Gomulkiewicz

and Holt 1995; Lande and Shannon 1996). Such persistence may

also depend on the ability of an organism to keep pace with its

evolving biotic environment; the outcome of competition or other

antagonistic ecological interactions may depend on the evolvabil-

ity of the participants (Yoshida et al. 2003; Carroll et al. 2007;

Gilchrist and Lee 2007).

Our model of plasticity differs from previous quantitative ge-

netic treatments of the topic in that plasticity and the traits them-

selves are allowed to evolve as a consequence of the outcome

of an explicit and evolving developmental network. Although

we make no claim that this model matches biological reality, in

this model the traits, their correlations, and their responses to

the environment evolve as a natural part of an interacting net-

work, rather than being determined by fiat. As a result, we were

less likely to build subconscious bias in to the model, and it can
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also show richer, and more biological, behavior. The conclusions

therefore vary from the usual outcomes of quantitative genetic

models in several ways. For example, we find that each natu-

rally defined trait is more likely to evolve useful genetic variation

than is an arbitrarily defined linear combination of traits, which is

not true with the artificially defined bivariate normal distribution

assumed in typical quantitative genetic models. In our models,

the distribution of mutational effects on phenotypes evolves as

a consequence of the developmental model, rather than by top-

down assumption. Therefore, the observed distributions of muta-

tional effects may better reflect how developmental mechanisms

evolve to shape pleiotropy, and therefore make more realistic

predictions.

These developmental models show great promise for the

study of phenotypic plasticity itself. It will be straightforward

to add realistic cost functions, feedback between the traits and de-

velopment, and feedback between the match between phenotype

and environment with development.

Our models make several predictions that should be amenable

to empirical study. We predict that populations that have evolved

plastic responses to the same environmental gradients for two

or more traits should show genetic and mutational correlations

among those traits in the same direction as their plastic responses.

In particular, this genetic correlation should be stronger than in

populations or species without the correlated plasticity. We pre-

dict that divergence among populations will often correlate with

plastic responses to similar environments within populations.
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