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 evolves despite epistatic constraints
 in a model of gene networks
 Jeremy Draghi1'2 and Michael Whitlock1

 ' Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

 2E-maii: jdraghi@gmail.com

 Received November 2, 2014

 Accepted June 19, 2015

 Stochastic noise in gene expression causes variation in the development of phenotypes, making such noise a potential target of

 stabilizing selection. Here, we develop a new simulation model of gene networks to study the adaptive landscape underlying

 the evolution of robustness to noise. We find that epistatic interactions between the determinants of the expression of a gene

 and its downstream effect impose significant constraints on evolution, but these interactions do allow the gradual evolution of

 increased robustness. Despite strong sign epistasis, adaptation rarely proceeds via deleterious intermediate steps, but instead

 occurs primarily through small beneficial mutations. A simple mathematical model captures the relevant features of the single

 gene fitness landscape and explains counterintuitive patterns, such as a correlation between the mean and standard deviation of

 phenotypes. In more complex networks, mutations in regulatory regions provide evolutionary pathways to increased robustness.

 These results chart the constraints and possibilities of adaptation to reduce expression noise and demonstrate the potential of a

 novel modeling framework for gene networks.

 key words: Adaptation, epistasis, models/simulations.

 Developmental noise—the phenotypic variation caused by intrin- the overall rate of adaptation (Wang and Zhang 2011). Studies

 sic sources of stochasticity or microenvironment variation—has have also suggested that evolutionary change in developmental

 interested evolutionary biologists since Waddington and oth- noise may cause parallel changes in mutational robustness

 ers first articulated the idea that development was canalized (de Visser et al. 2003). Evolutionary responses to noise may
 (Waddington 1942; Gibson and Wagner 2000). Experiments therefore shape the adaptive potential of populations through

 have shown that the magnitude of developmental noise is herita- the link between robustness to mutation and evolvability (Ancel

 ble and therefore can evolve (Clarke and McKenzie 1987). The and Fontana 2000; Wagner 2005; Bloom et al. 2006; Elena and

 possibility of evolution of developmental noise leads to a range of Sanjuan 2008; McBride et al. 2008; Cuevas et al. 2009; Draghi

 theoretical predictions. Selection for a specific optimal phenotype et al. 2010; Masel and Trotter 2010; Lauring et al. 2012; Stewart

 is expected to favor a reduction in developmental noise, at least et al. 2012; Goldhill et al. 2014). Understanding how species

 until the costs or pleiotropic effects of such adaptations outweigh have adapted to the ubiquitous challenge of developmental noise

 the benefits of further reduction (Gavrilets and Hastings 1994; may therefore explain the variational properties of organisms

 Wagner et al. 1997). However, greater variability may be favored (Wagner and Altenberg 1996) as well as the structure of gene

 when populations are poorly adapted (Tanase-Nicola and ten networks (Alon 2006; Chalancon et al. 2012).

 Wolde 2008) or when the environment is fluctuating, particularly Although early interest in developmental noise arose from

 when such changes are infrequent or costly to predict (Kussell and embryology, recent work on stochastic bet-hedging in mi

 Leibler 2005). By contributing variation in reproductive success, crobes (Veening et al. 2008) and advances in single-cell
 noise can reduce the effective population size, potentially slowing measurements have focused attention on the extent to which
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 stabilizing selection. Here, we develop a new simulation model of gene networks to study the adaptive landscape underlying

 the evolution of robustness to noise. We find that epistatic interactions between the determinants of the expression of a gene

 and its downstream effect impose significant constraints on evolution, but these interactions do allow the gradual evolution of

 increased robustness. Despite strong sign epistasis, adaptation rarely proceeds via deleterious intermediate steps, but instead

 occurs primarily through small beneficial mutations. A simple mathematical model captures the relevant features of the single

 gene fitness landscape and explains counterintuitive patterns, such as a correlation between the mean and standard deviation of

 phenotypes. In more complex networks, mutations in regulatory regions provide evolutionary pathways to increased robustness.

 These results chart the constraints and possibilities of adaptation to reduce expression noise and demonstrate the potential of a

 novel modeling framework for gene networks.
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 Developmental noise—the phenotypic variation caused by intrin

 sic sources of stochasticity or microenvironment variation—has

 interested evolutionary biologists since Waddington and oth

 ers first articulated the idea that development was canalized

 (Waddington 1942; Gibson and Wagner 2000). Experiments
 have shown that the magnitude of developmental noise is herita

 ble and therefore can evolve (Clarke and McKenzie 1987). The

 possibility of evolution of developmental noise leads to a range of

 theoretical predictions. Selection for a specific optimal phenotype

 is expected to favor a reduction in developmental noise, at least

 until the costs or pleiotropic effects of such adaptations outweigh

 the benefits of further reduction (Gavrilets and Hastings 1994;

 Wagner et al. 1997). However, greater variability may be favored

 when populations are poorly adapted (Tänase-Nicola and ten

 Wolde 2008) or when the environment is fluctuating, particularly

 when such changes are infrequent or costly to predict (Kussell and

 Leibler 2005). By contributing variation in reproductive success,

 noise can reduce the effective population size, potentially slowing

 the overall rate of adaptation (Wang and Zhang 2011). Studies

 have also suggested that evolutionary change in developmental

 noise may cause parallel changes in mutational robustness

 (de Visser et al. 2003). Evolutionary responses to noise may

 therefore shape the adaptive potential of populations through

 the link between robustness to mutation and evolvability (Ancel

 and Fontana 2000; Wagner 2005; Bloom et al. 2006; Elena and

 Sanjuân 2008; McBride et al. 2008; Cuevas et al. 2009; Draghi

 et al. 2010; Masel and Trotter 2010; Lauring et al. 2012; Stewart

 et al. 2012; Goldhill et al. 2014). Understanding how species

 have adapted to the ubiquitous challenge of developmental noise

 may therefore explain the variational properties of organisms

 (Wagner and Altenberg 1996) as well as the structure of gene

 networks (Alon 2006; Chalancon et al. 2012).

 Although early interest in developmental noise arose from

 embryology, recent work on stochastic bet-hedging in mi

 crobes (Veening et al. 2008) and advances in single-cell
 measurements have focused attention on the extent to which
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 J. DRAGHI AND M. WHITLOCK

 protein abundances vary among clonal cells due to chance dif- Draghi and Whitlock 2012; Macfa et al. 2012; Pujato et al.
 ferences. This specific category of phenotypic noise may arise 2013). However, few evolutionary models have considered noise,

 from common cellular mechanisms and help explain phenotypic and most of the exceptions (Ciliberti et al. 2007; Kaneko 2007;

 variation at larger scales. In particular, new experiments that con- Braunewell and Bornholdt 2008; Sevim and Rikvold 2008; Rohlf

 trol for differences in cellular state show that much of this noise in and Winkler 2009; Espinosa-Soto et al. 2011) have revealed in

 protein expression is intrinsic to the processes of regulation, tran- teresting links between adaptation and noise but have not mod

 scription, and translation (Elowitz et al. 2002; Swain et al. 2002; eled expression with sufficient detail to permit the study of ro

 but see Raser and O'Shea 2005; Raj and van Oudenaarden 2008). bustness to the stochastic production of transcripts. Biophysicists

 A dominant cause of this intrinsic noise is the low abundances have devised sophisticated models of stochastic gene expression

 of mRNA molecules in a cell (Kaern et al. 2005; Bar-Even et al. and have begun to explore the evolution of such modeled net
 2006; Cai et al. 2006; Newman et al. 2006; Yu et al. 2006). works (Kratz et al. 2008; Krishnan et al. 2008; Jenkins and Stekel

 Noise in expression can be beneficial in specific scenarios 2010). However, in comparison to the importance of the topic,

 (Silva-Rocha and de Lorenzo 2010), but may often impose a very few studies have modeled gene networks with equal weight

 cost, and selection may act to reduce expression noise in critical given to the biophysical mechanisms of stochastic expression

 genes (Fraser et al. 2004; Batada and Hurst 2007; Lehner 2008). and the evolutionary mechanisms of inheritance, mutation, and

 Intuitively, negative autoregulation is an obvious solution to selection.

 intrinsic noise: if the expression of a gene is regulated by its own We developed a new simulation model of transcriptionally

 products, then this autoregulation could compensate for stochastic regulated gene networks. This approach simulates the mecha

 over- or underproduction. However, recent theoretical work has nisms behind intrinsic noise in gene expression. The model tracks

 challenged this intuition, suggesting that negative feedback can discrete abundances ofbothmRNAs and proteins for several genes

 reduce expression noise only in limited circumstances (Stekel and models production and decay of both types of molecules as

 and Jenkins 2008; Marquez-Lago and Stelling 2010; Lestas et al. stochastic processes. Regulation is simulated in much more detail

 2010; Stewart et al. 2013). A different way to reduce noise stems than in previous evolutionary models (e.g., Wagner 1996), but

 from the idea that protein concentrations are expected to be less our model is still sufficiently simplified to allow for relatively

 noisy for genes with higher levels of transcription and lower rapid computation of the phenotypes of large populations over

 rates of translation (Thattai and van Oudenaarden 2001; Ozbudak thousands of generations. The model includes several categories

 et al. 2002; Fraser et al. 2004). Organisms might therefore reduce of mutations affecting the transcription rates of genes, as well as

 expression noise for critical genes by producing more transcripts parameters for the downstream effects of proteins. It is therefore

 and reducing the downstream effect of each one, via changes well suited to study the epistatic constraints on the evolution of

 in the decay rate or translational efficiency of the mRNA, or robustness to intrinsic noise.

 in the decay rate or activity of the protein product. Costs of We begin this article with a short section describing some

 mRNA production might pose one limit to this mechanism simple analytic predictions about the coevolution of gene
 of adapting to intrinsic noise, but this scenario also faces an expression and effect. This model makes some straightforward

 evolutionary problem: any single change in transcription rate, predictions about how the mean phenotype and developmental

 translation efficiency, or protein effect will perturb the means noise should evolve in the face of stochastic expression of mRNA

 of downstream phenotypes as well as their variances. Without and proteins. The bulk of the paper describes the new simulation

 a concomitant change in some other parameter, an increase in model. Results from these simulations confirm the simple

 transcription might therefore be deleterious. If adaptation via the predictions of the mathematical approximations: genes can

 increased expression of critical genes requires the substitutions evolve higher expression and lower per protein effects through

 of mutations that are typically deleterious, then the evolution a sequence of beneficial changes. These results also demonstrate

 of robustness to intrinsic noise might therefore be a widespread how feedback can evolve alongside these changes to further

 example of evolutionary constraints creating epistasis for fitness. reduce harmful developmental noise. Epistatic constraints do

 Gene network models have been used to investigate how limit the rate of adaption to less noisy genotypes, but adaptation

 epistasis shapes adaptation, particularly with regard to mutational can proceed without a significant role for deleterious substitutions

 robustness (Wagner 1996; Siegal and Bergman 2002; Azevedo or adaptive valley crossing. Finally, we explore more complex

 et al. 2006; Kaneko 2007; Leclerc 2008; van Dijk et al. 2012; networks and document how mutations with network-wide

 Pujato et al. 2013) and evolvability (Crombach and Hogeweg effects can further circumvent evolutionary constraints on the

 2008; Draghi and Wagner 2009; Fierst 2011; Wagner 2011; evolution of noise.
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 protein abundances vary among clonal cells due to chance dif

 ferences. This specific category of phenotypic noise may arise

 from common cellular mechanisms and help explain phenotypic

 variation at larger scales. In particular, new experiments that con
 trol for differences in cellular state show that much of this noise in

 protein expression is intrinsic to the processes of regulation, tran

 scription, and translation (Elowitz et al. 2002; Swain et al. 2002;

 but see Raser and O'Shea 2005; Raj and van Oudenaarden 2008).
 A dominant cause of this intrinsic noise is the low abundances

 of mRNA molecules in a cell (Kaern et al. 2005; Bar-Even et al.

 2006; Cai et al. 2006; Newman et al. 2006; Yu et al. 2006).

 Noise in expression can be beneficial in specific scenarios

 (Silva-Rocha and de Lorenzo 2010), but may often impose a

 cost, and selection may act to reduce expression noise in critical

 genes (Fraser et al. 2004; Batada and Hurst 2007; Lehner 2008).

 Intuitively, negative autoregulation is an obvious solution to

 intrinsic noise: if the expression of a gene is regulated by its own

 products, then this autoregulation could compensate for stochastic

 over- or underproduction. However, recent theoretical work has

 challenged this intuition, suggesting that negative feedback can

 reduce expression noise only in limited circumstances (Stekel

 and Jenkins 2008; Marquez-Lago and Stelling 2010; Lestas et al.

 2010; Stewart et al. 2013). A different way to reduce noise stems

 from the idea that protein concentrations are expected to be less

 noisy for genes with higher levels of transcription and lower

 rates of translation (Thattai and van Oudenaarden 2001 ; Ozbudak

 et al. 2002; Fraser et al. 2004). Organisms might therefore reduce

 expression noise for critical genes by producing more transcripts

 and reducing the downstream effect of each one, via changes

 in the decay rate or translational efficiency of the mRNA, or

 in the decay rate or activity of the protein product. Costs of

 mRNA production might pose one limit to this mechanism

 of adapting to intrinsic noise, but this scenario also faces an

 evolutionary problem: any single change in transcription rate,

 translation efficiency, or protein effect will perturb the means

 of downstream phenotypes as well as their variances. Without

 a concomitant change in some other parameter, an increase in

 transcription might therefore be deleterious. If adaptation via the

 increased expression of critical genes requires the substitutions

 of mutations that are typically deleterious, then the evolution

 of robustness to intrinsic noise might therefore be a widespread

 example of evolutionary constraints creating epistasis for fitness.

 Gene network models have been used to investigate how

 epistasis shapes adaptation, particularly with regard to mutational

 robustness (Wagner 1996; Siegal and Bergman 2002; Azevedo

 et al. 2006; Kaneko 2007; Leclerc 2008; van Dijk et al. 2012;

 Pujato et al. 2013) and evolvability (Crombach and Hogeweg

 2008; Draghi and Wagner 2009; Fierst 2011; Wagner 2011;
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 2013). However, few evolutionary models have considered noise,

 and most of the exceptions (Ciliberti et al. 2007; Kaneko 2007;
 Braunewell and Bornholdt 2008; Sevim and Rikvold 2008; Rohlf

 and Winkler 2009; Espinosa-Soto et al. 2011) have revealed in

 teresting links between adaptation and noise but have not mod

 eled expression with sufficient detail to permit the study of ro

 bustness to the stochastic production of transcripts. Biophysicists

 have devised sophisticated models of stochastic gene expression

 and have begun to explore the evolution of such modeled net
 works (Kratz et al. 2008; Krishnan et al. 2008; Jenkins and Stekel

 2010). However, in comparison to the importance of the topic,

 very few studies have modeled gene networks with equal weight

 given to the biophysical mechanisms of stochastic expression

 and the evolutionary mechanisms of inheritance, mutation, and
 selection.

 We developed a new simulation model of transcriptionally

 regulated gene networks. This approach simulates the mecha

 nisms behind intrinsic noise in gene expression. The model tracks

 discrete abundances of both mRNAs and proteins for several genes

 and models production and decay of both types of molecules as

 stochastic processes. Regulation is simulated in much more detail

 than in previous evolutionary models (e.g., Wagner 1996), but

 our model is still sufficiently simplified to allow for relatively

 rapid computation of the phenotypes of large populations over

 thousands of generations. The model includes several categories

 of mutations affecting the transcription rates of genes, as well as

 parameters for the downstream effects of proteins. It is therefore

 well suited to study the epistatic constraints on the evolution of
 robustness to intrinsic noise.

 We begin this article with a short section describing some

 simple analytic predictions about the coevolution of gene
 expression and effect. This model makes some straightforward

 predictions about how the mean phenotype and developmental

 noise should evolve in the face of stochastic expression of mRNA

 and proteins. The bulk of the paper describes the new simulation

 model. Results from these simulations confirm the simple

 predictions of the mathematical approximations: genes can

 evolve higher expression and lower per protein effects through

 a sequence of beneficial changes. These results also demonstrate

 how feedback can evolve alongside these changes to further

 reduce harmful developmental noise. Epistatic constraints do

 limit the rate of adaption to less noisy genotypes, but adaptation

 can proceed without a significant role for deleterious substitutions

 or adaptive valley crossing. Finally, we explore more complex
 networks and document how mutations with network-wide

 effects can further circumvent evolutionary constraints on the
 evolution of noise.
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 \2

 A Simple Approximate Model -(Y^ = I ^opl ~cpy) > Uopt
 of Gene Expression w (y'p) exp \ 2 (c2P2y + <0/ Jc^y + o20PI ' (5)
 We developed a simple mathematical model of stochasticity in

 genes expressed without feedback to help articulate one hypoth

 esis for how robustness to intrinsic noise might evolve. Focusing

 only on the stochasticity inherent in the production of transcripts,

 we model protein production (at rate \|r per minute per mRNA) and

 decay of both proteins (at rate XP) and mRNAs (at rate >,R) as de

 terministic processes. This equates to assuming that each protein

 or mRNA molecule exists for 1/yp or I /yR minutes, respectively,

 before decaying, and that exactly \J/ proteins are produced by

 each mRNA per minute. We also ignore the complication of lags

 between the production of a molecule and its phenotypic effect.

 We therefore focus entirely on the effects of two evolvable traits:

 Y, the total number of transcripts produced during development,

 and fk the phenotypic effect of each molecule of the protein. The

 phenotype is a random variable z; defined by

 Zi ~ cf> Poisson (Y), (1)

 where

 *

 YrYp

 Figure 1 shows two views of the fitness landscape calcu

 lated from the above equation. To investigate the fundamental

 evolutionary properties of this landscape, we used numerical op

 timization to find the best expression level given a specific phe

 notypic effect, and the converse. The thick line in Figure 1A de

 picts the changes as each variable is alternatingly optimized; this

 process is equivalent to a population evolving through sequen

 tial, optimally beneficial mutations. Note that the optimal trait

 combinations are always below the dashed line, which represents

 combinations which produce the optimal mean. Figure IB ex

 plains why this fitness landscape favors suboptimal means by

 showing the same mutations translated into changes in the mean

 phenotype and its standard deviation. Mutations in either expres

 sion (Y) or effect (f>) produce correlated changes in both the mean

 and noise; however, the slope of these correlations differs, as

 predicted by equations (2) and (3). Therefore, a reduction in

 phenotypic effect can worsen the mean while improving noise,

 with a net positive effect on fitness. Subsequently, an increase in

 expression can improve the mean while increasing noise, again
 with a beneficial net effect. The combined effect of both muta

 Zi has moments derived from the standard Poisson: lions is a small net improvement in both traits. As illustrated in
 Figure IB, repetitions of this cycle can effectively cause the popu

 |i , = cfjY. (2) lation to "tack" up the gradient of the fitness landscape. Although
 both types of mutations are constrained to positively correlated

 pleiotropic effects on the mean and standard deviation, selec

 tion achieves a gradual increase in the mean and a decrease in
 noise.

 Conceptually, this landscape is defined by a rising "ridge"

 leading from low-expression, high-effect genes with noisy phe

 oz = cf!>\/Y. (3)

 We assume that the trait experiences stabilizing selection
 with a Gaussian function:

 (7 — 7 i2 \ notypes to high-expression, low-effect genes with narrow distri
 wz = exp I — T , (4)

 2oopl2 J' butions. Mutations in either phenotypic effect or expression move
 at acute angles to this ridge, such that each beneficial mutation

 where zop, is the optimum phenotype and cr2pt represents the width moves both up the ridge and perpendicular to it. Stronger selection
 of the Gaussian selection function, by analogy with the variance (smaller o0pt) therefore has two effects on this process—the ridge

 of a Gaussian distribution. ascends more quickly, but also drops off more steeply on its sides.

 If we allow negative values of z instead of truncating at zero Using adaptive walks, we explored whether stronger selection ac

 and make the further assumption that the Poisson distribution is celerates or impedes adaptation to noise. Figure SI A shows that

 well approximated by the Gaussian over the range of Y, then we stronger selection leads to a faster response to selection. Stronger

 can express mean fitness as the integral of the product of two selection does reduce the size of the average substitution in terms

 Gaussian functions: of the change in the log parameter values (0.05 ± 0.002 for aopt =
 200; 0.065 ± 0.002 for aopt = 500; 0.075 ± 0.003 for aop, = 800),

 j ° <z _ m )2 (7 _ m )2 p p
 w (Y, P) = / e~ — — e~ p—dz but also increases the number of mutations that substitute (out of

 2jt -00 2cropt 2a, 0ne million proposed mutations, 102 ± 0.33 substitute for aopt
 / , ,2 \ = 200; 70 ± 0.27 for aopt = 500; 54 ± 0.23 for aopt = 800).
 I (popt ~ M-z) \ Oopt

 w(Y, P) = exp [ — ^ ( ? —— J - = Figure SIB shows that the selection coefficients of optimal
 opt changes in phenotypic effect (corresponding to the dotted lines 2 di+CToPt) / y^+cr,2
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 A Simple Approximate Model
 of Gene Expression
 We developed a simple mathematical model of stochasticity in

 genes expressed without feedback to help articulate one hypoth

 esis for how robustness to intrinsic noise might evolve. Focusing

 only on the stochasticity inherent in the production of transcripts,

 we model protein production (at rate \J/ per minute per mRNA) and

 decay of both proteins (at rate XP) and mRNAs (at rate >,R) as de

 terministic processes. This equates to assuming that each protein

 or mRNA molecule exists for l/yP or I /yR minutes, respectively,

 before decaying, and that exactly \J/ proteins are produced by

 each mRNA per minute. We also ignore the complication of lags

 between the production of a molecule and its phenotypic effect.

 We therefore focus entirely on the effects of two evolvable traits:

 Y, the total number of transcripts produced during development,

 and ß, the phenotypic effect of each molecule of the protein. The

 phenotype is a random variable z, defined by

 Zi ~ cß Poisson (y), (1)

 where

 *
 c = .

 YrYp

 Zi has moments derived from the standard Poisson:

 fu - cßY, (2)

 az = cß\/Y. (3)

 We assume that the trait experiences stabilizing selection
 with a Gaussian function:

 where jopt is the optimum phenotype and o*^pt represents the width

 of the Gaussian selection function, by analogy with the variance
 of a Gaussian distribution.

 If we allow negative values of z instead of truncating at zero

 and make the further assumption that the Poisson distribution is

 well approximated by the Gaussian over the range of Y, then we

 can express mean fitness as the integral of the product of two
 Gaussian functions:

 \2 \2

 ß) = —7r= f e e 2'1' dz zv2jt J-00 2aopt 2a.
 1 f °° „_(Z ~ P-opt) __(z - pz)

 2 '
 - /T/ o\ I (M'opt M-z) \ aopt
 w (F, ß) = exp I — 1

 2 (°?+aopt) / y /a? + a,2 opt

 w (Y, ß) = exp|- (^P'? Cßyj2,\ . g°pl =. (5)
 2 (c2ß2Y + eropt) ) v/c2ß2F + a2pt

 Figure 1 shows two views of the fitness landscape calcu

 lated from the above equation. To investigate the fundamental

 evolutionary properties of this landscape, we used numerical op

 timization to find the best expression level given a specific phe

 notypic effect, and the converse. The thick line in Figure 1A de

 picts the changes as each variable is alternatingly optimized; this

 process is equivalent to a population evolving through sequen

 tial, optimally beneficial mutations. Note that the optimal trait

 combinations are always below the dashed line, which represents

 combinations which produce the optimal mean. Figure IB ex

 plains why this fitness landscape favors suboptimal means by

 showing the same mutations translated into changes in the mean

 phenotype and its standard deviation. Mutations in either expres

 sion (50 or effect (ß) produce correlated changes in both the mean

 and noise; however, the slope of these correlations differs, as

 predicted by equations (2) and (3). Therefore, a reduction in

 phenotypic effect can worsen the mean while improving noise,

 with a net positive effect on fitness. Subsequently, an increase in

 expression can improve the mean while increasing noise, again
 with a beneficial net effect. The combined effect of both muta

 tions is a small net improvement in both traits. As illustrated in

 Figure 1B, repetitions of this cycle can effectively cause the popu

 lation to "tack" up the gradient of the fitness landscape. Although

 both types of mutations are constrained to positively correlated

 pleiotropic effects on the mean and standard deviation, selec

 tion achieves a gradual increase in the mean and a decrease in
 noise.

 Conceptually, this landscape is defined by a rising "ridge"

 leading from low-expression, high-effect genes with noisy phe

 notypes to high-expression, low-effect genes with narrow distri

 butions. Mutations in either phenotypic effect or expression move

 at acute angles to this ridge, such that each beneficial mutation

 moves both up the ridge and perpendicular to it. Stronger selection

 (smaller aopt) therefore has two effects on this process—the ridge

 ascends more quickly, but also drops off more steeply on its sides.

 Using adaptive walks, we explored whether stronger selection ac

 celerates or impedes adaptation to noise. Figure SI A shows that

 stronger selection leads to a faster response to selection. Stronger

 selection does reduce the size of the average substitution in terms

 of the change in the log parameter values (0.05 ± 0.002 for aopt =

 200; 0.065 ± 0.002 for aopt = 500; 0.075 ± 0.003 for cropt = 800),
 but also increases the number of mutations that substitute (out of

 one million proposed mutations, 102 ± 0.33 substitute for aopt

 = 200; 70 ± 0.27 for aopt = 500; 54 ± 0.23 for aopt = 800).
 Figure SIB shows that the selection coefficients of optimal

 changes in phenotypic effect (corresponding to the dotted lines
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 Figure 1. Fitness landscapes of the Gaussian one-gene model. Contour lines are drawn according to equation (5) based on a phenotypic

 optimum of 1000 and Gaussian selection with o0pt = 500. The dashed line depicts the values of phenotypic effect and mean lifetime
 expression that produce the optimal mean. The thick lines depict the effects of optimal beneficial mutations that change either phenotypic

 effect (dotted) or expression (solid). (A) Optimal adaptive steps favor alternating decreases in p and increases in expression. (B) The same
 series of mutations either decrease both the phenotypic mean and noise (dotted), or increase both (solid). Alternating changes in both
 expression and phenotypic effect achieve a net improvement in both mean and noise.

 in Fig. 1) shrink as noise decreases, but are overall larger when the other, but genes of each class may be deleted, or may duplicate

 stabilizing selection is stronger. Noisy genotypes do suffer a re- and diverge. Each gene expresses a unique transcript from which

 duced rate of adaptation in stochastic simulations of invasion, proteins are translated. By implementing a model of regulation

 particularly when selection is strong (dotted lines in Fig. SI). grounded in biophysical mechanisms, we allow genes to respond

 This additional constraint is caused by the excess variation in to external and internal signals and affect each others' expression

 reproductive success that results from high phenotypic variance, by ci.v-rcgulatory interactions. To focus on cis-regulation, we fix

 which reduces the effective population size (Wang and Zhang the rate of translation, and the rates of decay of both mRNA

 2011); the effect, however, is quite small. and proteins, for all genes. Therefore, mutations may only affect
 regulation by altering the rate of transcription of a gene; proteins

 are produced at a uniform rate per mRNA molecule, regardless of

 Simulation Methods the specific gene.
 OVERVIEW; ENTWINE MODEL Protein levels in a cell are typically subject to substantial

 Our goal is to build a model of gene regulation and development intrinsic noise because mRNA transcripts are often present in

 which is sufficiently abstract to be general and computationally small numbers (Bar-Even et al. 2006; Cai et al. 2006; Newman

 tractable, but which also allows developmental noise, epistasis, et al. 2006; Yu et al. 2006). Stochasticity in rates of transcription

 pleiotropy, and plasticity to arise by realistic mechanisms. We and mRNA lifetimes cause random noise in the abundances of

 named this model Evolving NeTworks With NoisE (ENTWINE). even highly expressed proteins; proteins that are present in small

 We focus on a small gene network expressed in a single eukaryotic numbers are subject to additional noise from the stochasticity of

 cell over a period of hours (Fig. 2). Genes belong to one of two translation and protein decay. In our model, both transcripts and

 essential types—regulatory genes and those that directly construct proteins are produced as Poisson processes scaled by propen

 the phenotype. Regulatory genes produce protein products that can sities, which represent the sums of regulatory effects, and both

 regulate both regulatory and phenotype genes. Phenotype genes are removed by stochastic exponential decay. Although this ap

 may also regulate other genes and determine the growth rate of proach incorporates several important sources of biological noise,

 one or more phenotypic traits. Neither type of gene can mutate to it does not span all potentially important mechanisms of random
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 Figure 1. Fitness landscapes of the Gaussian one-gene model. Contour lines are drawn according to equation (5) based on a phenotypic

 optimum of 1000 and Gaussian selection with o0pt = 500. The dashed line depicts the values of phenotypic effect and mean lifetime
 expression that produce the optimal mean. The thick lines depict the effects of optimal beneficial mutations that change either phenotypic

 effect (dotted) or expression (solid). (A) Optimal adaptive steps favor alternating decreases in ß and increases in expression. (B) The same
 series of mutations either decrease both the phenotypic mean and noise (dotted), or increase both (solid). Alternating changes in both
 expression and phenotypic effect achieve a net improvement in both mean and noise.

 in Fig. 1) shrink as noise decreases, but are overall larger when

 stabilizing selection is stronger. Noisy genotypes do suffer a re

 duced rate of adaptation in stochastic simulations of invasion,

 particularly when selection is strong (dotted lines in Fig. SI).

 This additional constraint is caused by the excess variation in

 reproductive success that results from high phenotypic variance,

 which reduces the effective population size (Wang and Zhang

 2011); the effect, however, is quite small.

 Simulation Methods
 OVERVIEW: ENTWINE MODEL

 Our goal is to build a model of gene regulation and development

 which is sufficiently abstract to be general and computationally

 tractable, but which also allows developmental noise, epistasis,

 pleiotropy, and plasticity to arise by realistic mechanisms. We

 named this model Evolving NeTworks With NoisE (ENTWINE).

 We focus on a small gene network expressed in a single eukaryotic

 cell over a period of hours (Fig. 2). Genes belong to one of two

 essential types—regulatory genes and those that directly construct

 the phenotype. Regulatory genes produce protein products that can

 regulate both regulatory and phenotype genes. Phenotype genes

 may also regulate other genes and determine the growth rate of

 one or more phenotypic traits. Neither type of gene can mutate to

 the other, but genes of each class may be deleted, or may duplicate

 and diverge. Each gene expresses a unique transcript from which

 proteins are translated. By implementing a model of regulation

 grounded in biophysical mechanisms, we allow genes to respond

 to external and internal signals and affect each others' expression

 by as-regulatory interactions. To focus on as-regulation, we fix

 the rate of translation, and the rates of decay of both mRNA

 and proteins, for all genes. Therefore, mutations may only affect

 regulation by altering the rate of transcription of a gene; proteins

 are produced at a uniform rate per mRNA molecule, regardless of

 the specific gene.

 Protein levels in a cell are typically subject to substantial

 intrinsic noise because mRNA transcripts are often present in

 small numbers (Bar-Even et al. 2006; Cai et al. 2006; Newman

 et al. 2006; Yu et al. 2006). Stochasticity in rates of transcription
 and mRNA lifetimes cause random noise in the abundances of

 even highly expressed proteins; proteins that are present in small

 numbers are subject to additional noise from the stochasticity of

 translation and protein decay. In our model, both transcripts and

 proteins are produced as Poisson processes scaled by propen

 sities, which represent the sums of regulatory effects, and both

 are removed by stochastic exponential decay. Although this ap

 proach incorporates several important sources of biological noise,

 it does not span all potentially important mechanisms of random
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 Figure 2. Schematic diagram of the model. Inner box: A model of a single gene with both regulatory and phenotypic effects. Production

 and decay of both mRNAs and proteins are modeled discretely and stochastically. Protein abundances have regulatory effects on the rate

 of transcription by interactions with binding sites, located in cis with each gene. A trait develops by incremental change over periods of
 time, x, which are calculated dynamically. The rate of trait increase over each interval x is proportional to the abundance of each protein

 times its phenotypic effect. Outer box: A schematic of a network of multiple genes, some of which have only regulatory functionality.

 variation in gene expression. We assume that transcription factor GENOTYPE-TO-PHENOTYPE MAP

 binding turns over quickly and that transcription events are un- Simulating developmental dynamics

 correlated, which may be approximately true for some organisms Development is modeled as a stochastic chemical system with

 such as Saccharomyces cerevisiae (Zenklusen et al. 2008, but see integer numbers of proteins and mRNA transcripts and discrete

 Pedraza and Paulsson 2008). Some other mechanisms of noise, transcription, translation, and decay events. A modified version of

 such as transcription reinitiation or slow changes in gene acces- Gillespie's x-leaping algorithm (Gillespie 2007) is used to follow

 sibility, are clearly important sources of noise in some systems the dynamics for a predetermined number of time units fmax. This

 (Daret al. 2012) but would require a more complex framework to method assumes that, within the interval x, the productions of

 model them. proteins and transcripts can be treated as Poisson processes with
 Some parameters of our model are assigned fixed values constant rates. We choose x with regard to the expected change

 from the literature; however, many aspects of a gene can evolve. in rates, aiming to keep the relative change in any rate over the

 As detailed below and in the supplement, cis- and trans-factors interval x below the threshold s. Using the observed change in

 determining the expression of a gene are mutable, as are the each rate over the previous interval x', we calculate x based on

 targets and effects of regulatory proteins and the trait effects of the current value of each rate, r;, and its previous value, rf.

 proteins with phenotypic effects. For example, autoregulatory , ,
 ex r

 feedback involves four mutable aspects of the genotype: the x = min———. (6)
 f. — y

 cls-regulatory target motif of the protein, the protein's inherent

 regulatory effect, the binding affinity of the targeted binding site, The Supporting Information derives this equation in more

 and the «s-regulatory effect associated with that binding site. detail, describes minor additional heuristics for minimizing error,

 Mutations in any of these variables can change autoregulation, and documents the relative insensitivity of our results to the choice

 but each has different mutational rules and different implications of e.

 for further evolutionary change. Once x is determined, the time t is advanced to t + x and
 Below, we briefly describe the three main levels of our model. the change in each integer number of proteins or transcripts is

 Additional details and references are provided in the Supporting calculated from stochastic production and decay processes. The

 Information. production of molecular species i is Poisson distributed with mean
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 Figure 2. Schematic diagram of the model. Inner box: A model of a single gene with both regulatory and phenotypic effects. Production

 and decay of both mRNAs and proteins are modeled discretely and stochastically. Protein abundances have regulatory effects on the rate

 of transcription by interactions with binding sites, located in eis with each gene. A trait develops by incremental change over periods of
 time, x, which are calculated dynamically. The rate of trait increase over each interval x is proportional to the abundance of each protein

 times its phenotypic effect. Outer box: A schematic of a network of multiple genes, some of which have only regulatory functionality.

 variation in gene expression. We assume that transcription factor

 binding turns over quickly and that transcription events are un

 correlated, which may be approximately true for some organisms

 such as Saccharomyces cerevisiae (Zenklusen et al. 2008, but see

 Pedraza and Paulsson 2008). Some other mechanisms of noise,

 such as transcription reinitiation or slow changes in gene acces

 sibility, are clearly important sources of noise in some systems

 (Dar et al. 2012) but would require a more complex framework to
 model them.

 Some parameters of our model are assigned fixed values

 from the literature; however, many aspects of a gene can evolve.

 As detailed below and in the supplement, eis- and rrans-factors

 determining the expression of a gene are mutable, as are the

 targets and effects of regulatory proteins and the trait effects of

 proteins with phenotypic effects. For example, autoregulatory

 feedback involves four mutable aspects of the genotype: the

 c/.v-regulatory target motif of the protein, the protein's inherent

 regulatory effect, the binding affinity of the targeted binding site,

 and the cw-regulatory effect associated with that binding site.

 Mutations in any of these variables can change autoregulation,

 but each has different mutational rules and different implications

 for further evolutionary change.

 Below, we briefly describe the three main levels of our model.

 Additional details and references are provided in the Supporting
 Information.

 GENOTYPE-TO-PHENOTYPE MAP

 Simulating developmental dynamics
 Development is modeled as a stochastic chemical system with

 integer numbers of proteins and mRNA transcripts and discrete

 transcription, translation, and decay events. A modified version of

 Gillespie's x-leaping algorithm (Gillespie 2007) is used to follow

 the dynamics for a predetermined number of time units fmax. This

 method assumes that, within the interval t, the productions of

 proteins and transcripts can be treated as Poisson processes with

 constant rates. We choose x with regard to the expected change

 in rates, aiming to keep the relative change in any rate over the

 interval x below the threshold 8. Using the observed change in

 each rate over the previous interval x', we calculate x based on

 the current value of each rate, r,-, and its previous value, r,'.

 T = min Jilt-. (6)
 ri ~ r>

 The Supporting Information derives this equation in more

 detail, describes minor additional heuristics for minimizing error,

 and documents the relative insensitivity of our results to the choice

 of e.

 Once x is determined, the time t is advanced to t + x and

 the change in each integer number of proteins or transcripts is

 calculated from stochastic production and decay processes. The

 production of molecular species i is Poisson distributed with mean
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 r,. Although decay is most accurately described as a binomial of the product is small enough to be ignored. This simplification

 process, we use computationally faster Poisson random numbers greatly reduces the complexity of our simulations but may inflate

 to model decay under certain conditions; specifically, when the the utility of feedback mechanisms by reducing lag.

 expected decay over the interval t is less than 10% of the total We derived an equation for a simplified model of regulation

 molecular abundance. Let x, be the number of copies of protein based on a few assumptions. We assume that the effects of tran

 i in the cell and y, the number of transcripts corresponding to scription factors are proportional to how often they are bound and

 protein i. Equation (7) defines the distribution of the change in x,-; quantify this by the Michaelis-Menten like function, where

 changes in yj are defined in exactly the same way. K is the half-saturation constant. This approach follows common

 Ax,

 Poisson (rjx) — Binomial (x,-, 1 — e~yF%)
 if ypx > 0.1 Xi

 Poisson (rjx) — Poisson (y/>tx,)
 if yPx < 0. lx,

 thermodynamics approaches to modeling gene regulation through

 a separation of time scales, which have been shown to be accurate

 (7) approximations (e.g., Gertz et al. 2009). We assume that the rate

 of transcription ranges from zero, in the absence of activation, to

 (j)max* Finally, we assume that activation has diminishing returns

 The trait z is initialized at zero and changes in proportion when multiple activators act at once, as does repression. From

 to the quantity and trait effects, (3,-, of each of the P phenotype these principles, we derive equation (11), below, for the tran

 genes in {1...P). This calculation is essentially taking a numerical scription rate of gene i, (fc, as a function of the vector of protein

 integral with a variable step size x. We therefore use a simple concentrations x.

 midpoint approximation to reduce the error caused by large time /

 stePs- <i(x)=4>max (1 - n
 r

 AZ= £(x;,, + A*V2) P;-T. (8)
 j e A

 PijXj

 Kij + xj

 j e «
 Hi'

 Modeling cis-regulation Here, A is the set of proteins with activating effects on gene i
 Our model of gene regulation sums regulatory inputs to determine and R is the set with repressing effects. As described below, each

 the accessibility of the basal transcription apparatus to the RNA protein j has a c/.v-effect cy when specifically regulating gene i and

 polymerase; this formulation is inspired by Bintu et al. (2005) and a trans-effect, tj, that captures the inherent effects of that protein.

 Sherman and Cohen (2012), but simplified to serve an evolution- If cytj is positive, protein j is an activator of gene i; if the product

 ary modeling approach. Recall that x,- is the number of copies of is negative, then protein j represses gene i. We calculate these
 protein i in the cell and y, is the number of transcripts correspond- combined effects as:

 ing to protein i. Let <j)i(x) be the rate of transcription of gene i, \)/

 the rate of translation, and yp and yr the per-copy rates of protein Pij = 1 — e~lc'jtj I. (12)
 and mRNA decay. The deterministic rates of change in x, and y,

 Intuitively, py is the probability that a bound transcription

 factor is acting over an infinitesimal interval dt. In that interval,
 dyi
 —jj = 4>; lx) — yryi, (9) transcription occurs at the rate <(>max if at least one activator and

 no repressors are acting; if any repressors are acting during that

 ^ interval dt, then transcription is zero. This form does allow for a
 — = rjry,- — y pXj. (10) biologically realistic asymmetry between activation and repres

 are

 dt

 This formulation involves several biological assumptions.
 sion: a very strong repressor can effectively block transcription,

 regardless of the strength of activation.

 First, we assume that gene expression is regulated primarily The half.saturation parameters Ky are derived from their ge

 by differences in transcription and that initiation is the rate- nomk representation_the number of mismatches ky from an
 limiting step in transcription. These assumptions are certainly • , , , • , • , .. .

 b x p i j ideal binding sequence—by simple thermodynamic arguments

 not universally true, but are consistent with basic eukaryotic (Gerland et al 2002)
 gene expression. Although many post-transcriptional levels of

 regulation are recognized, transcription is typically considered k _ Cke"k. (13)
 the most important level and regulatory changes often modify

 initiation (Latchman 2010). We also assume that the time between Here, a scales the effect of each mismatch and ck quan

 the initiation of transcription or translation and the appearance tifies the affinity of a perfect binding sequence. For speed and
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 r,-. Although decay is most accurately described as a binomial

 process, we use computationally faster Poisson random numbers

 to model decay under certain conditions; specifically, when the

 expected decay over the interval x is less than 10% of the total

 molecular abundance. Let x, be the number of copies of protein

 i in the cell and y, the number of transcripts corresponding to

 protein i. Equation (7) defines the distribution of the change in jq;

 changes in >!i are defined in exactly the same way.

 Axj

 Poisson (rjx) — Binomial (x,-, 1 — e ypT)
 ifyPx>0.1x,

 Poisson (/';x) — Poisson (y/>xx,)

 if Y/>X < 0. lx,

 The trait z is initialized at zero and changes in proportion

 to the quantity and trait effects, ßj, of each of the P phenotype

 genes in {I...P}. This calculation is essentially taking a numerical

 integral with a variable step size x. We therefore use a simple

 midpoint approximation to reduce the error caused by large time

 steps.

 A Z =  J2 (xj.' + AXj/2) p./t- w

 Modeling cis-regulation
 Our model of gene regulation sums regulatory inputs to determine

 the accessibility of the basal transcription apparatus to the RNA

 polymerase; this formulation is inspired by Bintu et al. (2005) and

 Sherman and Cohen (2012), but simplified to serve an evolution

 ary modeling approach. Recall that x, is the number of copies of

 protein i in the cell and y, is the number of transcripts correspond

 ing to protein i. Let <|),(x) be the rate of transcription of gene i, \|/

 the rate of translation, and yp and yr the per-copy rates of protein

 and mRNA decay. The deterministic rates of change in x, and y,
 are

 ~T~ = §i (x) -Y Rïi, (9)
 dt

 -y- = - YpXi. (10) dt

 This formulation involves several biological assumptions.

 First, we assume that gene expression is regulated primarily

 by differences in transcription and that initiation is the rate

 limiting step in transcription. These assumptions are certainly

 not universally true, but are consistent with basic eukaryotic

 gene expression. Although many post-transcriptional levels of

 regulation are recognized, transcription is typically considered

 the most important level and regulatory changes often modify

 initiation (Latchman 2010). We also assume that the time between

 the initiation of transcription or translation and the appearance
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 of the product is small enough to be ignored. This simplification

 greatly reduces the complexity of our simulations but may inflate

 the utility of feedback mechanisms by reducing lag.

 We derived an equation for a simplified model of regulation

 based on a few assumptions. We assume that the effects of tran

 scription factors are proportional to how often they are bound and

 quantify this by the Michaelis-Menten like function, , where

 K is the half-saturation constant. This approach follows common

 thermodynamics approaches to modeling gene regulation through

 a separation of time scales, which have been shown to be accurate

 approximations (e.g., Gertz et al. 2009). We assume that the rate

 of transcription ranges from zero, in the absence of activation, to

 (j)max* Finally, we assume that activation has diminishing returns

 when multiple activators act at once, as does repression. From

 these principles, we derive equation (11), below, for the tran

 scription rate of gene i, cf>j, as a function of the vector of protein

 concentrations x.

 >i (*) = 4>max 1 - J~[ ( 1
 j e A

 PijXj

 Kjj X;

 Hi' X.,)
 j e «

 Here, A is the set of proteins with activating effects on gene i

 and R is the set with repressing effects. As described below, each

 protein j has a cfs-effect cy when specifically regulating gene i and

 a trans-effect, tj, that captures the inherent effects of that protein.

 If Cytj is positive, protein j is an activator of gene i; if the product

 is negative, then protein j represses gene i. We calculate these
 combined effects as:

 j = 1 -éHc'W|. (12) Pu

 Intuitively, py is the probability that a bound transcription

 factor is acting over an infinitesimal interval dt. In that interval,

 transcription occurs at the rate 4>max if at least one activator and

 no repressors are acting; if any repressors are acting during that

 interval dt, then transcription is zero. This form does allow for a

 biologically realistic asymmetry between activation and repres

 sion: a very strong repressor can effectively block transcription,

 regardless of the strength of activation.

 The half-saturation parameters Ky are derived from their ge

 nomic representation—the number of mismatches ky from an

 ideal binding sequence—by simple thermodynamic arguments

 (Gerland et al. 2002).

 K = ckeak. (13)

 Here, a scales the effect of each mismatch and ck quan

 tifies the affinity of a perfect binding sequence. For speed and

This content downloaded from 146.245.216.16 on Tue, 08 Jan 2019 16:58:42 UTC
All use subject to https://about.jstor.org/terms



 ROBUSTNESS TO EXPRESSION NOISE

 simplicity, we ignore any transcription factor site interaction with most common at 100,000 generations. We could then unambigu

 a number of mismatches greater than four. ously trace the chain of parental haplotypes back to the founder.
 Equation (11) implicitly assumes that each binding site in- We measured phenotypic moments, selective coefficients, and

 teracts with at most one protein. In practice, we extend these other properties by reconstructing each haplotype and performing

 expressions to model multiple, distinct protein species that bind independent simulations of its development with high replication,
 to the same site: their abundances are summed and the effects

 described by equation (12) are weighted by relative abundances.

 Let Xy be the sum of all protein abundances with the same binding Simulation Results
 site for gene i as protein j; then this weighting is accomplished by Robustness to intrinsic noise evolved through multiple mecha

 replacing xj with Xy in each denominator of equation (11). nisms in our gene network model. To unravel this complexity, we

 Values for rates of transcription, translation, and decay, as developed a simple analysis of one significant mechanism: a shift

 well as other parameters, are drawn from the literature as de- to higher expression and lower per protein phenotypic effect, as

 scribed in the Supporting Information (parameter values for the modeled in the analytical theory above. After confirming that the

 genotype-phenotype map). mathematical approach predicts the evolution of a reduced version
 of our model, we return to the full version of our model to explore

 REPRESENTATION OF GENOMES the role of feedback mechanisms. Finally, we end by considering

 Genes are regulated by proteins binding to ris-regulatory sites. how mutations with compound effects can also contribute to the

 We assume that there are B distinct types of protein-DNA binding evolutionary reduction of noise,

 motifs. Any gene can have a defined c/.v-regulatory site for any of

 the B possible DNA-binding motifs, whether any protein in the EVOLUTION OF ROBUSTNESS IN A ONE GENE

 organism actually produces a protein with that regulatory target. MODEL WITHOUT FEEDBACK

 During reproduction, genes can experience several classes We performed simulations with a reduced version of our gene

 of mutations, including deletions and duplications. Any gene can network model to test the accuracy of our simple mathematical

 be deleted at a per-gene rate p-def genes are duplicated at a per- analysis of expression noise. These simulations used a single

 genome rate of |Xdup. Other mutational processes are based on a gene without any possibility of feedback (i.e., the gene was not

 per-nucleotide mutation rate p.nuc, as described in the Supporting allowed to be sensitive to the concentration of its protein). Despite

 Information. this simplicity, these simulations violated the assumptions used
 to derive equation (5) in several ways: phenotypes were limited

 EVOLUTIONARY SIMULATIONS to positive values and their distributions were not constrained

 Our simulated organisms are haploid asexuals. We use the to Gaussian shapes, and all four central processes (transcription,

 Wright-Fisher model: constant population size N, selection on translation, and decay of mRNA and proteins) were stochastically

 fertility, and nonoverlapping generations. Selection is Gaussian modeled. Figure S2 shows that these more realistic simulations

 (as in eq. (4)) with an optimal value of 1000 and a strength of evolved as predicted, with alternations between decreases in effect

 selection inversely proportional to the parameter aopt, which is and increases in expression producing small net improvements in

 set to 500 unless otherwise noted. Populations are initially ge- developmental noise (phenotypic standard deviation),

 netically uniform and start with fixed numbers of regulatory and

 phenotype genes. A candidate initial genotype is constructed by CHARACTERIZING THE EVOLUTION OF ROBUSTNESS
 random choices of gene properties, as described in the Supporting TO NOISE IN COMPLEX SINGLE-GENE SIMULATIONS
 Information. For the full-network simulations, the fitness of this Starting from initial genotypes with high noise, we evolved repli

 genotype is then tested with 100 replicate simulations. If its mean cate populations of our stochastic gene network model (Fig. 2)

 fitness falls in the range (0.15, 0.25), this genotype becomes the under stabilizing selection for a single phenotypic trait. Popula

 founder of a population; otherwise, it is discarded and a new can- tions consisted of 10,000 haploid asexual individuals evolving for

 didate is generated. This filter assures that all starting genotypes 100,000 generations with an overall mutation rate of 0.15 mu

 produced a nonzero trait value with ample opportunity for further tations per population per generation (mutation details are given

 adaptation. A similar approach was used for other simulations as in the Supporting Information, Table SI). To focus on the evo

 described in the Results. lution of noise, phenotypic effect was set to be initially high (f)
 We recorded the nature and genetic background of every = 0.3) and genotypes were chosen to have starting means within

 mutation that arose in every population; in addition, we saved a hundred units of the optimum. We first examine populations

 a complete population record every 5000 generations. To recon- with a single gene with both phenotypic and regulatory effect

 struct the line of descent, we first determined which haplotype was (one-gene model); more complex networks are considered in the
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 simplicity, we ignore any transcription factor site interaction with

 a number of mismatches greater than four.

 Equation (11) implicitly assumes that each binding site in

 teracts with at most one protein. In practice, we extend these

 expressions to model multiple, distinct protein species that bind
 to the same site: their abundances are summed and the effects

 described by equation (12) are weighted by relative abundances.

 Let Xij be the sum of all protein abundances with the same binding

 site for gene i as protein j; then this weighting is accomplished by

 replacing xj with Xtj in each denominator of equation (11).

 Values for rates of transcription, translation, and decay, as

 well as other parameters, are drawn from the literature as de

 scribed in the Supporting Information (parameter values for the

 genotype-phenotype map).

 REPRESENTATION OF GENOMES

 Genes are regulated by proteins binding to c/.v-regulalory sites.

 We assume that there are B distinct types of protein-DNA binding

 motifs. Any gene can have a defined c/.v-regulatory site for any of

 the B possible DNA-binding motifs, whether any protein in the

 organism actually produces a protein with that regulatory target.

 During reproduction, genes can experience several classes

 of mutations, including deletions and duplications. Any gene can

 be deleted at a per-gene rate p,dei; genes are duplicated at a per

 genome rate of p (|Lip. Other mutational processes are based on a

 per-nucleotide mutation rate p.nUc, as described in the Supporting
 Information.

 EVOLUTIONARY SIMULATIONS

 Our simulated organisms are haploid asexuals. We use the
 Wright-Fisher model: constant population size N, selection on

 fertility, and nonoverlapping generations. Selection is Gaussian

 (as in eq. (4)) with an optimal value of 1000 and a strength of

 selection inversely proportional to the parameter aopt, which is

 set to 500 unless otherwise noted. Populations are initially ge

 netically uniform and start with fixed numbers of regulatory and

 phenotype genes. A candidate initial genotype is constructed by

 random choices of gene properties, as described in the Supporting

 Information. For the full-network simulations, the fitness of this

 genotype is then tested with 100 replicate simulations. If its mean

 fitness falls in the range (0.15, 0.25), this genotype becomes the

 founder of a population; otherwise, it is discarded and a new can

 didate is generated. This filter assures that all starting genotypes

 produced a nonzero trait value with ample opportunity for further

 adaptation. A similar approach was used for other simulations as
 described in the Results.

 We recorded the nature and genetic background of every

 mutation that arose in every population; in addition, we saved

 a complete population record every 5000 generations. To recon

 struct the line of descent, we first determined which haplotype was

 most common at 100,000 generations. We could then unambigu

 ously trace the chain of parental haplotypes back to the founder.

 We measured phenotypic moments, selective coefficients, and

 other properties by reconstructing each haplotype and performing

 independent simulations of its development with high replication.

 Simulation Results
 Robustness to intrinsic noise evolved through multiple mecha

 nisms in our gene network model. To unravel this complexity, we

 developed a simple analysis of one significant mechanism: a shift

 to higher expression and lower per protein phenotypic effect, as

 modeled in the analytical theory above. After confirming that the

 mathematical approach predicts the evolution of a reduced version

 of our model, we return to the full version of our model to explore

 the role of feedback mechanisms. Finally, we end by considering

 how mutations with compound effects can also contribute to the

 evolutionary reduction of noise.

 EVOLUTION OF ROBUSTNESS IN A ONE GENE

 MODEL WITHOUT FEEDBACK

 We performed simulations with a reduced version of our gene

 network model to test the accuracy of our simple mathematical

 analysis of expression noise. These simulations used a single

 gene without any possibility of feedback (i.e., the gene was not

 allowed to be sensitive to the concentration of its protein). Despite

 this simplicity, these simulations violated the assumptions used

 to derive equation (5) in several ways: phenotypes were limited

 to positive values and their distributions were not constrained

 to Gaussian shapes, and all four central processes (transcription,

 translation, and decay of mRNA and proteins) were stochastically

 modeled. Figure S2 shows that these more realistic simulations

 evolved as predicted, with alternations between decreases in effect

 and increases in expression producing small net improvements in

 developmental noise (phenotypic standard deviation).

 CHARACTERIZING THE EVOLUTION OF ROBUSTNESS

 TO NOISE IN COMPLEX SINGLE-GENE SIMULATIONS

 Starting from initial genotypes with high noise, we evolved repli

 cate populations of our stochastic gene network model (Fig. 2)

 under stabilizing selection for a single phenotypic trait. Popula

 tions consisted of 10,000 haploid asexual individuals evolving for

 100,000 generations with an overall mutation rate of 0.15 mu

 tations per population per generation (mutation details are given

 in the Supporting Information, Table SI). To focus on the evo

 lution of noise, phenotypic effect was set to be initially high (ß

 = 0.3) and genotypes were chosen to have starting means within

 a hundred units of the optimum. We first examine populations

 with a single gene with both phenotypic and regulatory effect

 (one-gene model); more complex networks are considered in the
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 Figure 3. Changes in the fitness (A), phenotypic standard deviation (B), phenotypic effect per protein (C), and lifetime expression
 (D) of the most common genotype in each of 100 replicate simulations. Phenotypic effects per protein are read directly from the
 genotypes, whereas the other three measures are based on 100,000 replicate measurements of each genotype. Black lines represent the
 means across replicates, whereas gray lines indicate the mean plus and minus one standard deviation. Genotypes have one gene with
 potential feedback (one gene model). N = 10,000 and populations experience an average mutation rate of 0.15 mutations per generation
 (mutation details are given in the Supporting Information, Table SI).

 following section. Our primary goal is to understand the mech- (Fig. 3A and B). Although most substitutions are beneficial

 anisms by which mutations can decrease the effects of intrinsic (96.3% selection coefficients are positive when measured with

 noise. In particular, we want to quantify the role of autoregula- 10,000 replicates), only a little more than half of these beneficial

 tion and verify if phenotypic effects evolve to smaller values and substitutions (59%) decrease noise. This pattern is consistent with

 expression evolve to larger values as predicted in the previous the picture of evolution in Figure 1, in which many mutations are

 section. selected to increase both the mean phenotype and noise. Overall,
 Across all populations, fitness increases and developmen- the phenotypic effects of each gene decrease and their expression

 tal noise decreases throughout the durations of the simulations increases, again as predicted from our simple analytic approach.
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 Figure 3. Changes in the fitness (A), phenotypic standard deviation (B), phenotypic effect per protein (C), and lifetime expression
 (D) of the most common genotype in each of 100 replicate simulations. Phenotypic effects per protein are read directly from the
 genotypes, whereas the other three measures are based on 100,000 replicate measurements of each genotype. Black lines represent the
 means across replicates, whereas gray lines indicate the mean plus and minus one standard deviation. Genotypes have one gene with
 potential feedback (one gene model). N = 10,000 and populations experience an average mutation rate of 0.15 mutations per generation
 (mutation details are given in the Supporting Information, Table SI).

 following section. Our primary goal is to understand the mech

 anisms by which mutations can decrease the effects of intrinsic

 noise. In particular, we want to quantify the role of autoregula

 tion and verify if phenotypic effects evolve to smaller values and

 expression evolve to larger values as predicted in the previous
 section.

 Across all populations, fitness increases and developmen

 tal noise decreases throughout the durations of the simulations

 (Fig. 3A and B). Although most substitutions are beneficial

 (96.3% selection coefficients are positive when measured with

 10,000 replicates), only a little more than half of these beneficial

 substitutions (59%) decrease noise. This pattern is consistent with

 the picture of evolution in Figure 1, in which many mutations are

 selected to increase both the mean phenotype and noise. Overall,

 the phenotypic effects of each gene decrease and their expression

 increases, again as predicted from our simple analytic approach.
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 Figure 4. The relationship between the phenotypic effect of a gene and developmental noise for the most common genotypes after
 100,000 generations of evolution. Shading indicates the index of dispersion of the expression of each genotype. Simulations are from
 the one-gene model; dispersion index and developmental noise are means estimated from 100,000 replicate trials for each genotype.

 Our analytic model predicts that phenotypic effect will cor- simulating the addition of protein to developing organisms and

 relate positively with developmental noise; however, little cor- measuring the change in total expression; Figure S3 confirms that

 relation is evident over all the evolved gene networks (Fig. 4; genotypes with smaller dispersion indices show negative feed

 R2 = 0.014). One possible explanation is that some genotypes back (Spearman's p = 0.95). This tendency toward underdisper

 may not be producing Poisson-distributed numbers of transcripts, sion is not present in the original genotypes, but evolves over time

 as assumed in our analytical model. In particular, genotypes with (Fig. S4). Overdispersion in the ancestral genotypes is rapidly

 undispersed expression may produce less developmental noise lost while the fraction of populations with significantly underdis

 than we would predict from their phenotypic effects. Adding this persed genotypes rises steadily.

 additional dimension of expression—the dispersion index, mea- Figure 5 shows an example population to illustrate the inter

 sured as the variance of lifetime expression over its mean, as action of changes in feedback with the reductions in phenotypic

 shown by gray scale on the plotted points in Figure 4—allows effect and increases in expression predicted from the analytical

 the model to explain the majority of variation in developmental model. The plotted population changed substantially in dispersion

 noise (R2 = 0.926 for a linear model with both centered variables index (it is represented by the lower-left point in Fig. 4); however,

 and their interaction; all terms are significant with P-values less its evolutionary dynamics closely resemble the predictions of the

 than 1 x 10 8). The explanation for this statistical result is clear previous section. Figure 5B in particular shows that long-term

 from Figure 4; phenotypic effect predicts noise when dispersion decreases in developmental noise can be accomplished by alter

 index is held constant, but genotypes with indices of dispersion nating changes whose individual effects on both the mean and

 substantially below one show less noise than expected for their standard deviation sum to much smaller net effects. This predicts

 value of fl. that the average rate of genetic change in fitness-related traits is
 We hypothesized that the dispersion index was measuring much higher than would be expected from the relatively slow rate

 feedback from protein concentrations to transcription rates and of improvement in developmental noise.

 that genotypes with dispersion indices below one had evolved We tested this prediction by comparing the net evolved
 negative feedback to mitigate intrinsic noise. We tested this by change in both the mean and in developmental noise to the sum of
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 Figure 4. The relationship between the phenotypic effect of a gene and developmental noise for the most common genotypes after
 100,000 generations of evolution. Shading indicates the index of dispersion of the expression of each genotype. Simulations are from
 the one-gene model; dispersion index and developmental noise are means estimated from 100,000 replicate trials for each genotype.

 Our analytic model predicts that phenotypic effect will cor

 relate positively with developmental noise; however, little cor

 relation is evident over all the evolved gene networks (Fig. 4;

 R1 = 0.014). One possible explanation is that some genotypes

 may not be producing Poisson-distributed numbers of transcripts,

 as assumed in our analytical model. In particular, genotypes with

 undispersed expression may produce less developmental noise

 than we would predict from their phenotypic effects. Adding this

 additional dimension of expression—the dispersion index, mea

 sured as the variance of lifetime expression over its mean, as

 shown by gray scale on the plotted points in Figure 4—allows

 the model to explain the majority of variation in developmental

 noise (R2 = 0.926 for a linear model with both centered variables

 and their interaction; all terms are significant with P-values less

 than 1 x 10 8). The explanation for this statistical result is clear

 from Figure 4; phenotypic effect predicts noise when dispersion

 index is held constant, but genotypes with indices of dispersion

 substantially below one show less noise than expected for their

 value of ß.

 We hypothesized that the dispersion index was measuring

 feedback from protein concentrations to transcription rates and

 that genotypes with dispersion indices below one had evolved

 negative feedback to mitigate intrinsic noise. We tested this by

 simulating the addition of protein to developing organisms and

 measuring the change in total expression; Figure S3 confirms that

 genotypes with smaller dispersion indices show negative feed

 back (Spearman's p = 0.95). This tendency toward underdisper

 sion is not present in the original genotypes, but evolves over time

 (Fig. S4). Overdispersion in the ancestral genotypes is rapidly

 lost while the fraction of populations with significantly underdis

 persed genotypes rises steadily.

 Figure 5 shows an example population to illustrate the inter

 action of changes in feedback with the reductions in phenotypic

 effect and increases in expression predicted from the analytical

 model. The plotted population changed substantially in dispersion

 index (it is represented by the lower-left point in Fig. 4); however,

 its evolutionary dynamics closely resemble the predictions of the

 previous section. Figure 5B in particular shows that long-term

 decreases in developmental noise can be accomplished by alter

 nating changes whose individual effects on both the mean and

 standard deviation sum to much smaller net effects. This predicts

 that the average rate of genetic change in fitness-related traits is

 much higher than would be expected from the relatively slow rate

 of improvement in developmental noise.

 We tested this prediction by comparing the net evolved

 change in both the mean and in developmental noise to the sum of
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 Figure 5. Substitutions in an exceptional single-gene population (single-gene model) show stepwise, adaptive changes in both effect
 and expression (A), which are mirrored by zigzag changes in the mean and standard deviation of a genotype's phenotype distribution
 (B). The ordering of substitutions is shown by the labeled arrows. Shading indicates the index of dispersion, on a relative scale from the
 maximum of 1 (black) to 0.42 (white).

 the unsigned magnitude of all changes in each lineage. On aver- ADAPTATION TO NOISE IN NETWORKS OF GENES
 age, substitutions in a population led to a net change in the mean The preceding sections outline two pathways by which evolution

 phenotype of 120 units, with a total evolved change of nearly can reduce phenotypic noise: increases in expression comple

 2500 units. The disparity in changes to developmental noise is mented by decreases in per protein effects and negative autoreg

 much smaller: populations decreased in standard deviation by an ulation. We explored simulations of more complicated networks

 average of 750 units and experienced an average total of 1643 with a focused goal: to identify mechanisms of the evolution of

 units of evolved change. Overall, an average of 16 substitutions intrinsic noise that differed qualitatively from those discovered in

 occurred per population. These numbers indicate that the short- simpler simulations. To identify any such mechanisms, we ran a

 term rate of change in the mean and, to a lesser extent, in the simulation set with three regulatory and three phenotype genes as

 noise around that mean is much faster than the net change in both well as duplication and deletion mutations (labeled full network

 aspects of the phenotype. simulations). We then examined the evolution of phenotypic ef
 The fitness landscape defined by this simple model could feet and expression in these replicates, focusing on populations

 also be traversed by groups of mutations that include deleterious that showed a particularly large improvement in fitness between

 steps; by moving off of, then back to, the high-fitness ridge, these 10,000 and 100,000 generations. Figure 6 shows the evolution

 substitutions would cross an adaptive valley. Initial measurements of developmental noise in one such exceptional population. Two

 showed that most substitutions in the single-gene simulations of substitutions with large, beneficial effects on noise are highlighted

 the complex model are beneficial, but a fraction are potentially by diagraming their direct effects on the regulation of phenotype

 deleterious (60 substitutions out of 1599 have negative selective genes. In both cases, the substitutions were changes in the tar

 coefficients based on 10,000 replicates simulations of each get DNA-binding motif of a protein. By changing which class of

 genotype). However, only two substitutions were statistically cis-regulatory sites the proteins bound to, these two substitutions

 significantly deleterious in a more precise test (one million changed the regulatory effect of a single protein on multiple target

 replicate fitness measurements; Mann-Whitney test corrected for genes in a single mutational step. As a result, the expression of

 multiple comparisons with a Bonferroni correction). Deleterious a protein with large phenotypic effect was reduced, whereas the

 intermediate steps can play a role in adaptation on this fitness expressions of several proteins with small effects were simulta

 landscape, but their contribution is relatively small. neously increased.
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 Figure 5. Substitutions in an exceptional single-gene population (single-gene model) show stepwise, adaptive changes in both effect
 and expression (A), which are mirrored by zigzag changes in the mean and standard deviation of a genotype's phenotype distribution
 (B). The ordering of substitutions is shown by the labeled arrows. Shading indicates the index of dispersion, on a relative scale from the
 maximum of 1 (black) to 0.42 (white).

 the unsigned magnitude of all changes in each lineage. On aver

 age, substitutions in a population led to a net change in the mean

 phenotype of 120 units, with a total evolved change of nearly

 2500 units. The disparity in changes to developmental noise is

 much smaller: populations decreased in standard deviation by an

 average of 750 units and experienced an average total of 1643

 units of evolved change. Overall, an average of 16 substitutions

 occurred per population. These numbers indicate that the short

 term rate of change in the mean and, to a lesser extent, in the

 noise around that mean is much faster than the net change in both

 aspects of the phenotype.

 The fitness landscape defined by this simple model could

 also be traversed by groups of mutations that include deleterious

 steps; by moving off of, then back to, the high-fitness ridge, these

 substitutions would cross an adaptive valley. Initial measurements

 showed that most substitutions in the single-gene simulations of

 the complex model are beneficial, but a fraction are potentially

 deleterious (60 substitutions out of 1599 have negative selective

 coefficients based on 10,000 replicates simulations of each

 genotype). However, only two substitutions were statistically

 significantly deleterious in a more precise test (one million

 replicate fitness measurements; Mann-Whitney test corrected for

 multiple comparisons with a Bonferroni correction). Deleterious

 intermediate steps can play a role in adaptation on this fitness

 landscape, but their contribution is relatively small.

 ADAPTATION TO NOISE IN NETWORKS OF GENES

 The preceding sections outline two pathways by which evolution

 can reduce phenotypic noise: increases in expression comple

 mented by decreases in per protein effects and negative autoreg

 ulation. We explored simulations of more complicated networks

 with a focused goal: to identify mechanisms of the evolution of

 intrinsic noise that differed qualitatively from those discovered in

 simpler simulations. To identify any such mechanisms, we ran a

 simulation set with three regulatory and three phenotype genes as

 well as duplication and deletion mutations (labeled full network

 simulations). We then examined the evolution of phenotypic ef

 fect and expression in these replicates, focusing on populations

 that showed a particularly large improvement in fitness between

 10,000 and 100,000 generations. Figure 6 shows the evolution

 of developmental noise in one such exceptional population. Two

 substitutions with large, beneficial effects on noise are highlighted

 by diagraming their direct effects on the regulation of phenotype

 genes. In both cases, the substitutions were changes in the tar

 get DNA-binding motif of a protein. By changing which class of

 cw-regulatory sites the proteins bound to, these two substitutions

 changed the regulatory effect of a single protein on multiple target

 genes in a single mutational step. As a result, the expression of

 a protein with large phenotypic effect was reduced, whereas the

 expressions of several proteins with small effects were simulta

 neously increased.
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 Figure 6. Changes in the magnitude of noise through evolution in an example population with a complex gene network (full network
 simulations). Two substitutions, both changing the c/s-regulatory binding site target of a protein with regulatory action, are diagrammed.

 Circles indicate phenotype genes, whereas squares depict regulatory genes (some of the latter are omitted for clarity). Arrows indicate
 the regulatory connections that change as a direct result of each substitution, with their thicknesses indicative of the relative strengths of

 their effect. Pointed arrowheads indicate positive regulation, whereas flat arrowheads indicate negative regulation. In each case, a single

 mutational change to the regulatory target of a protein directly downregulates a gene with large phenotypic effect and upregulates
 genes with smaller phenotypic effects. The phenotypic effect and the measured expression (mean total transcription, measured over
 10,000 replicates) are labeled for each phenotype gene; for both substitutions, all phenotype genes change significantly in expression.
 Developmental noise is replicated over 10,000 measurements for each genotype. The two earliest substitutions on the line of descent
 are omitted for scale.

 A single mutation that turns down genes of large effect and 0ISCUSSiOD

 turns up genes of small effect could have a potent benefit; in We haye shown that jn a stochastic model of gene expression,

 principle, a wholesale change in expression profile could reduce evolution under stabilizing selection leads to a gradual reduction

 developmental noise while conserving mean phenotype. We ex- in developmental noise. The main mechanism of this noise re

 am,ned all substitutions that changed the DNA-binding motif ducdon .g by an increase in expression concomitant with lower

 in the 500 populations with multiple regulatory and phenotype functional effects per molecule, which together reduce stochas

 genes (full network simulations), testing for coordinated changes tjc variation jn ±e downstream effects of the protein pool,

 in expression that match the pattern in Figure 6. Specifically, we A simple mathematical model linking stochastic expression noise

 looked for pairs of phenotype genes in which the gene with the tQ phenotypic noise successfully explains how the adaptive substi

 larger trait effect decreased significantly in expression, whereas tu{ion of sma|L alternating changes in both expression and effect

 the gene with the smaller effect simultaneously increased. To can achieve adaptation t0 noise. Two notable predictions of this

 account for nonnormality of expression data and multiple com- evolutionary model are that the mean phenotype often evolves
 parisons, we used the Wilcoxon rank-sum test with a = 0.005. away from its optimum to smaller values and that the evolution

 Among the 1173 substituted changes in DNA-binding motifs, 246 ary trajectory of the mean changes direction frequently. Also,

 significantly matched this pattern; of these, about half (129) oc- ^ smaU and p()sllivc sdection coefflcients of the mutations in

 curred in regulatory genes. The median selection coefficient of volyed predicts that adaptation t0 noise will proceed more quickly

 these coordinated DNA-binding motif changes is larger than all in |arger popu]atjons

 other substitution classes (Table 1). Shifts in regulatory patterns For ^ work> we haye deye]oped a noye, simulation modei

 from one target binding site to another are therefore a significant of evo|ution of a developmental system. This model is intended

 source of adaptive mutations in this model. t0 offer a new framework for asking questions about the evolution
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 Figure 6. Changes in the magnitude of noise through evolution in an example population with a complex gene network (full network
 simulations). Two substitutions, both changing the c/s-regulatory binding site target of a protein with regulatory action, are diagrammed.

 Circles indicate phenotype genes, whereas squares depict regulatory genes (some of the latter are omitted for clarity). Arrows indicate
 the regulatory connections that change as a direct result of each substitution, with their thicknesses indicative of the relative strengths of

 their effect. Pointed arrowheads indicate positive regulation, whereas flat arrowheads indicate negative regulation. In each case, a single

 mutational change to the regulatory target of a protein directly downregulates a gene with large phenotypic effect and upregulates
 genes with smaller phenotypic effects. The phenotypic effect and the measured expression (mean total transcription, measured over
 10,000 replicates) are labeled for each phenotype gene; for both substitutions, all phenotype genes change significantly in expression.
 Developmental noise is replicated over 10,000 measurements for each genotype. The two earliest substitutions on the line of descent
 are omitted for scale.

 A single mutation that turns down genes of large effect and

 turns up genes of small effect could have a potent benefit: in

 principle, a wholesale change in expression profile could reduce

 developmental noise while conserving mean phenotype. We ex

 amined all substitutions that changed the DNA-binding motif

 in the 500 populations with multiple regulatory and phenotype

 genes (full network simulations), testing for coordinated changes

 in expression that match the pattern in Figure 6. Specifically, we

 looked for pairs of phenotype genes in which the gene with the

 larger trait effect decreased significantly in expression, whereas

 the gene with the smaller effect simultaneously increased. To

 account for nonnormality of expression data and multiple com

 parisons, we used the Wilcoxon rank-sum test with a = 0.005.

 Among the 1173 substituted changes in DNA-binding motifs, 246

 significantly matched this pattern; of these, about half (129) oc

 curred in regulatory genes. The median selection coefficient of

 these coordinated DNA-binding motif changes is larger than all

 other substitution classes (Table 1). Shifts in regulatory patterns

 from one target binding site to another are therefore a significant

 source of adaptive mutations in this model.

 Discussion
 We have shown that in a stochastic model of gene expression,

 evolution under stabilizing selection leads to a gradual reduction

 in developmental noise. The main mechanism of this noise re

 duction is by an increase in expression concomitant with lower

 functional effects per molecule, which together reduce stochas

 tic variation in the downstream effects of the protein pool.

 A simple mathematical model linking stochastic expression noise

 to phenotypic noise successfully explains how the adaptive substi

 tution of small, alternating changes in both expression and effect

 can achieve adaptation to noise. Two notable predictions of this

 evolutionary model are that the mean phenotype often evolves

 away from its optimum to smaller values and that the evolution

 ary trajectory of the mean changes direction frequently. Also,

 the small and positive selection coefficients of the mutations in

 volved predicts that adaptation to noise will proceed more quickly

 in larger populations.

 For this work, we have developed a novel simulation model

 of evolution of a developmental system. This model is intended

 to offer a new framework for asking questions about the evolution
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 of gene networks. This simulation tracks the evolution of popu- Table 1. Median selection coefficients for the full network

 lations consisting of individuals who each develop according to simulations.

 Class  Median s  N

 DNA-binding motif (coordinated)  0.032  246

 DNA-binding motif (other)  0.014  927

 Phenotypic effect  0.016  1439

 Cis-site effect  0.0006  3372

 C'z',v-site K  0.0005  531

 Protein trans-effect  0.006  1241

 Duplication  0.02  713

 Deletion  0.008  1640

 rules determined by the basic rules of gene regulation, account

 ing for the finite and stochastic number of mRNA transcripts and

 protein molecules extant in the organism at any given time point.

 The model allows for site-specific binding of promoters and re

 pressors of transcription, using simple biochemical relationships

 to determine the patterns of gene expression. Although not in

 tended to capture the full range of biological complexity, this

 model is designed to mimic many basic biological processes and

 in so doing create patterns of mutational effects, epistasis, and

 gene interaction in a more natural way than can be captured by
 more abstract models of evolution.

 Although other models of stochastic gene expression are coded by that transcript. Other properties of gene expression and

 available (e.g., Kratz et al. 2008), our approach is unique in its protein dynamics, such as mRNA and protein decay rates, could

 focus on evolutionary applications. Genotype-phenotype models potentially play analogous roles; expanding our model to allow

 for evolutionary simulation face two main challenges: determi- these properties to evolve would be a productive next step. Costs

 nation of a stochastic phenotype for a genotype must be fast, 0f the production of mRNA or proteins may limit the observed

 because this calculation must be repeated for every individual in mechanism of robustness to intrinsic noise to genes whose effects

 a large population, for each generation and for each replicate, and are particularly sensitive to stochastic variation. However, for

 a mutational model for each mutable parameter must be speci- such genes, the "brute-force" strategy of high expression may be

 fied. This model is one attempt to capture realistic mechanisms the most effective means of buffering against expression noise
 of expression and regulation while satisfying these constraints. (see also Lestas et al. 2010).

 Although the model is far from a complete description of the me- The role of negative autoregulation in reducing noise in gene

 chanics of gene expression, it does allow insights that could not expression is controversial (Stekel and Jenkins 2008; Marquez
 have been gained by the use of simpler frameworks such as the Lago and Stelling 2010; Lestas et al. 2010). In our model,

 Wagner model (Wagner 1996) or quantitative genetic models with the evolution of novel negative autoregulation plays a signifi
 assumed Gaussian mutational effects. By separating out quanti- Cant role in the evolution of robustness to noise and coevolves

 ties such as the expression and effect of a gene, or the binding wjth a transition to lower protein effect and higher expression,

 affinity of a protein binding site interaction from the effect of the The value of negative feedback may depend on details of our

 protein when bound, our model accounts for a greater propor- model; the design of our model of trait development places

 tion of the degeneracy underlying biological systems, allowing limits on the potential usefulness of feedback. Our model only

 new evolutionary dynamics—such as the replacement of low- allows feedback from the availability of a protein to the reg
 expression, high-effect genes with high-expression, low-effect ulatory process, and no mechanism is available for feedback

 genes—to emerge. Other recent explorations following the same fr0m the phenotypic trait itself. Without feedback from the trait,

 philosophy, such as the deterministic model of gene expression autoregulation can only act on the information contained in

 developed by Pujato et al. (2013), also demonstrate the value of the current protein concentrations. These concentrations change

 mechanistic models that capture multiple aspects of gene effects. rapidly and are not likely to convey much information about

 We expect that our ENTWINE model will allow the investigation the long-term history of expression. Future work will extend

 of many novel questions about the evolution of robustness and the model to allow for feedback from the trait value, either di

 phenotypic variability. rectly or as an internal measure of performance, permitting a
 The major pattern we document—that genotypes evolve to mGre thorough evaluation of the role of feedback in robustness to

 use high-expression, low-effect genes to minimize noise—aligns noise.

 with the empirical finding that important genes in yeast show Our results illustrate the benefits to combining a mechanistic

 high expression and low translational efficiency (Fraser et al. understanding of gene expression with an evolutionary frame

 2004). Although translational efficiency is not mutable in our work. Molecular and systems biologists have begun to link the

 model, our phenotypic effect parameter plays the same role by structure of networks with the dynamics of their responses to

 scaling the effect on the phenotype of each individual transcript, as noise (e.g., Thattai and van Oudenaarden 2001, Alon 2006); here,

 mediated through the phenotypic products created by the protein we have begun to explore how evolutionary forces act on the
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 of gene networks. This simulation tracks the evolution of popu

 lations consisting of individuals who each develop according to

 rules determined by the basic rules of gene regulation, account

 ing for the finite and stochastic number of mRNA transcripts and

 protein molecules extant in the organism at any given time point.

 The model allows for site-specific binding of promoters and re

 pressors of transcription, using simple biochemical relationships

 to determine the patterns of gene expression. Although not in

 tended to capture the full range of biological complexity, this

 model is designed to mimic many basic biological processes and

 in so doing create patterns of mutational effects, epistasis, and

 gene interaction in a more natural way than can be captured by
 more abstract models of evolution.

 Although other models of stochastic gene expression are

 available (e.g., Kratz et al. 2008), our approach is unique in its

 focus on evolutionary applications. Genotype-phenotype models

 for evolutionary simulation face two main challenges: determi

 nation of a stochastic phenotype for a genotype must be fast,

 because this calculation must be repeated for every individual in

 a large population, for each generation and for each replicate, and

 a mutational model for each mutable parameter must be speci

 fied. This model is one attempt to capture realistic mechanisms

 of expression and regulation while satisfying these constraints.

 Although the model is far from a complete description of the me

 chanics of gene expression, it does allow insights that could not

 have been gained by the use of simpler frameworks such as the

 Wagner model (Wagner 1996) or quantitative genetic models with

 assumed Gaussian mutational effects. By separating out quanti

 ties such as the expression and effect of a gene, or the binding

 affinity of a protein binding site interaction from the effect of the

 protein when bound, our model accounts for a greater propor

 tion of the degeneracy underlying biological systems, allowing

 new evolutionary dynamics—such as the replacement of low

 expression, high-effect genes with high-expression, low-effect

 genes—to emerge. Other recent explorations following the same

 philosophy, such as the deterministic model of gene expression

 developed by Pujato et al. (2013), also demonstrate the value of

 mechanistic models that capture multiple aspects of gene effects.

 We expect that our ENTWINE model will allow the investigation

 of many novel questions about the evolution of robustness and

 phenotypic variability.

 The major pattern we document—that genotypes evolve to

 use high-expression, low-effect genes to minimize noise—aligns

 with the empirical finding that important genes in yeast show

 high expression and low translational efficiency (Fraser et al.

 2004). Although translational efficiency is not mutable in our

 model, our phenotypic effect parameter plays the same role by

 scaling the effect on the phenotype of each individual transcript, as

 mediated through the phenotypic products created by the protein

 2356  EVOLUTION SEPTEMBER 2015

 Table 1. Median selection coefficients for the full network

 simulations.

 Class  Median s  N

 DNA-binding motif (coordinated)  0.032  246

 DNA-binding motif (other)  0.014  927

 Phenotypic effect  0.016  1439

 Ci.y-site effect  0.0006  3372

 C;s-site K  0.0005  531

 Protein trans-effect  0.006  1241

 Duplication  0.02  713

 Deletion  0.008  1640

 coded by that transcript. Other properties of gene expression and

 protein dynamics, such as mRNA and protein decay rates, could

 potentially play analogous roles; expanding our model to allow

 these properties to evolve would be a productive next step. Costs

 of the production of mRNA or proteins may limit the observed

 mechanism of robustness to intrinsic noise to genes whose effects

 are particularly sensitive to stochastic variation. However, for

 such genes, the "brute-force" strategy of high expression may be

 the most effective means of buffering against expression noise

 (see also Lestas et al. 2010).

 The role of negative autoregulation in reducing noise in gene

 expression is controversial (Stekel and Jenkins 2008; Marquez

 Lago and Stelling 2010; Lestas et al. 2010). In our model,

 the evolution of novel negative autoregulation plays a signifi
 cant role in the evolution of robustness to noise and coevolves

 with a transition to lower protein effect and higher expression.

 The value of negative feedback may depend on details of our

 model; the design of our model of trait development places

 limits on the potential usefulness of feedback. Our model only

 allows feedback from the availability of a protein to the reg

 ulatory process, and no mechanism is available for feedback

 from the phenotypic trait itself. Without feedback from the trait,

 autoregulation can only act on the information contained in

 the current protein concentrations. These concentrations change

 rapidly and are not likely to convey much information about

 the long-term history of expression. Future work will extend

 the model to allow for feedback from the trait value, either di

 rectly or as an internal measure of performance, permitting a

 more thorough evaluation of the role of feedback in robustness to
 noise.

 Our results illustrate the benefits to combining a mechanistic

 understanding of gene expression with an evolutionary frame

 work. Molecular and systems biologists have begun to link the

 structure of networks with the dynamics of their responses to

 noise (e.g., Thattai and van Oudenaarden 2001, Alon 2006); here,

 we have begun to explore how evolutionary forces act on the
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 expression strategies of genes in networks. Our initial hypothe- Draghi, J. A., and G. P. Wagner. 2009. The evolutionary dynamics of evolv

 ses suggested that clusters of mutations crossing "fitness valleys" ability in a gene network model. J. Evol. Biol. 22: 599-611.

 —intermediate genotypes with fitnesses below their immediate

 ancestors and descendants—would be required to avoid con

 Draghi, J. A., and M. C. Whitlock. 2012. Phenotypic plasticity facilitates
 mutational variance, genetic variance, and evolvability along the major
 axis of environmental variation. Evolution 66:2891-2902.

 straints on the evolution of noise. By helping to disprove this Draghi, J. A„ T. L. Parsons, G. P. Wagner, and J. B. Plotkin. 2010. Mutational

 hypothesis, and elucidate the alternative, this complex model con- robustness can facilitate adaptation. Nature 463(7279):353-355.
 Elena, S. E, and R. Sanjuan. 2008. The effect of genetic robustness on evolv

 ability in digital organisms. BMC Evol. Biol. 8:284. doi: 10.1186/1471
 2148-8-284.

 Elowitz, M. B„ A. J. Levine, E. D. Siggia, and P. S. Swain. 2002. Stochastic
 DATA ARCHIVING gene expression in a single cell. Science 297:1183-1186.

 tributes to our evolutionary understanding of genes as regulatory

 elements in dynamic networks.

 C and R code for all simulations and analyses have been archived

 at Dryad: 10.5061/dryad.8c81j.

 Espinosa-Soto, C., O. C. Martin, and A. Wagner. 2011. Phenotypic plasticity

 can facilitate adaptive evolution in gene regulatory circuits. BMC Evol.
 Biol. 11:5. doi:10.1186/1471-2148-11-5.

 Fierst, J. L. 2011. A history of phenotypic plasticity accelerates adaptation to
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