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1  | INTRODUCTION

Phenotypic plasticity is an intuitive solution to the problems posed 
by environmental variation. Imagining the advantage possessed by 
an organism that could developmentally produce the optimal phe‐
notype for any environment motivates inquiry into what barriers 
prevent species from too closely approaching this ideal. Following 
DeWitt, Sih, and Wilson (1998) and other reviews (Auld, Agrawal, 

& Relyea, 2009; Murren et al., 2015), these barriers can be cate‐
gorized into costs and limitations. A genotype that can produce a 
plastic phenotype may incur a cost when compared to another gen‐
otype that produces the same phenotype constitutively; these costs 
may stem from the burden of sensory organs, developmental mis‐
takes or instability, or deficiencies of a hastily produced phenotype 
in comparison to a constitutive response. Given such costs, plastic 
generalists might be outcompeted by specialists that commit to a 
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Abstract
Adaptive phenotypic plasticity is a potent but not ubiquitous solution to environ‐
mental heterogeneity, driving interest in what factors promote and limit its evolution. 
Here, a novel computational model representing stochastic information flow in devel‐
opment is used to explore evolution from a constitutive phenotype to an adaptively 
plastic response. Results show that populations tend to evolve robustness to devel‐
opmental stochasticity, but that this evolved robustness limits evolvability; specifi‐
cally, robust genotypes have less ability to evolve adaptive plasticity when presented 
with a mix of both the ancestral environment and a new environment. Analytic calcu‐
lations and computational experiments confirm that this constraint occurs when the 
initial mutational steps towards plasticity are pleiotropic, such that mutant fitnesses 
decline in the environment to which their parents are well‐adapted. Greater pheno‐
typic variability improves evolvability in the model by lessening this decline as well 
as by improving the fitness of partial adaptations to the new environment. By making 
initial plastic mutations more palatable to natural selection, phenotypic variability 
can increase the evolvability of an innovative, plastic response without improving 
evolvability to simpler challenges such as a shifted optimum in a single environment. 
Populations that evolved robustness by negative feedback between the trait and its 
rate of change show a particularly strong constraining effect on the evolvability of 
plasticity, revealing another mechanism by which evolutionary history can limit later 
innovation. These results document a novel mechanism by which weakening selec‐
tion could actually stimulate the evolution of a major innovation.
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particular developmental trajectory. Further, the evolutionary suc‐
cess of plasticity can also be proscribed by constraints or limitations: 
inabilities to realize the full range of optimal phenotypes demanded 
by a complex, changing environment. For example, an animal might 
not be able to both produce an aggressive behaviour in response to 
one situation and behave passively in response to another because 
of the constraints imposed by the shared neurological and hormonal 
bases of the two responses. As the hypothesized costs of plasticity 
have typically been hard to observe (Auld et al., 2009; Van Buskirk & 
Steiner, 2009) and are empirically entangled with the adaptive ben‐
efits of plasticity (Hendry, 2015), explanations for diversity in the 
roles of plasticity in nature have tended to focus on understanding 
limitations. The focus of this study is to model how pleiotropic lim‐
itations or constraints can impede the initial evolution of an adaptive 
plastic response.

Plasticity has long been hypothesized as a catalyst for evolution‐
ary change, driving empirical and theoretical approaches to map‐
ping the limitations on its evolution. Plastic responses frequently 
vary among related species in slope and curvature (Murren et al., 
2014),	 suggesting	 that	 evolution	 refines	 the	 shape	 of	 plasticity	 as	
closely related species diversify; plasticity may also catalyse spe‐
ciation (Pfennig et al., 2010). Plastic responses can become fixed 
differences between species through genetic accommodation and 
permit persistence across a diverse niche (Schneider & Meyer 2017), 
and the factors allowing traits to vary with environmental cues can 
potentially be repurposed to build novelties (Moczek et al., 2011). 
These same factors make plasticity an attractive predictor of which 
species might be best able to tolerate stressors like climate change 
or adapt to them; for example, variation in plasticity explains differ‐
ences in persistence in response to climate change among plant taxa 
in Thoreau's woods (Willis, Ruhfel, Primack, Miller‐Rushing, & Davis, 
2008). In plants, invasive species tend to be more plastic (Davidson, 
Jennions, & Nicotra, 2011), although questions remain about in‐
ferred causal connections between plasticity and invasion success.

Several modelling approaches have suggested that populations 
that have evolved to produce a plastic response are more evolv‐
able in response to environmental change (Ancel & Fontana 2000; 
Espinosa‐Soto, Martin, & Wagner, 2011; Fierst, 2011), and exper‐
iments have found some support for this correlation empirically 
(Schaum	 &	 Collins	 2014;	 Noble	 et	 al.	 2019).	 Plasticity	 also	 medi‐
ates evolution by hiding genetic variation from natural selection. 
For example, selection against a plastic response—favouring, for 
example, uniform size across a temperature gradient—can lead to 
hidden genetic divergence across space (Conover & Schultz, 1995) 
or a cryptic adaptive response to environmental change (Merilä, 
Kruuk, & Sheldon, 2001). Variation in the shapes of reaction norms 
constitutes a form of hidden or cryptic genetic variation which can 
be revealed when a population encounters a novel environment 
(Schlichting, 2008), and understanding local variation in plastic re‐
sponses is a requirement for accurate prediction of range shifts due 
to	climate	change	(Valladares	et	al.,	2014).	That	plasticity	can	both	
cause phenotypic variation and also hide it has led to an ongoing de‐
bate over the circumstances that link plasticity to higher evolvability 

(Ghalambor, McKay, Carroll, & Reznick, 2007; Schaum & Collins 
2014).	It	is	clear	that	understanding	which	traits	and	organisms	are	
likely to display plasticity is vital to making accurate predictions 
about how populations adapt to novel circumstances.

Models of limitations on the evolution of plasticity vary in both 
the treatment of populations and in the nature of the links between 
genotypes, environments and phenotypes. Approaches to modelling 
the evolving populations include quantitative genetics (Via & Lande, 
1985; De Jong, 1990; Van Tienderen et al. 1991; Gomulkiewicz & 
Kirkpatrick, 1992; Gavrilets & Scheiner, 1993; Lande, 2009), adap‐
tive	dynamics	(Ernande	&	Dieckmann,	2004)	and	population	genet‐
ics (Draghi & Whitlock, 2012; Gomez‐Mestre & Jovani, 2013; Leimar, 
Hammerstein, & Dooren, 2006; Scheiner & Holt, 2012; Svanbäck, 
Pineda‐Krch, & Doebeli, 2009). Models also differ in whether the 
plastic trait arises from the interactions of explicit loci (e.g. Scheiner 
& Holt, 2012) or is allowed to vary without genetic constraints (e.g. 
Ernande	&	Dieckmann,	2004).	Each	approach	has	confirmed	some	
intuitive expectations (Ghalambor et al., 2007; Hendry, 2015) but 
also revealed surprises; for example, a lack of predictability of 
the selective environment can impede the evolution of plasticity 
(Gavrilets & Scheiner, 1993) but also, when environmental change 
is sufficiently unpredictable, select for plasticity as a mechanism of 
diversifying bet‐hedging (Scheiner & Holt, 2012).

A major cause of this diversity in approaches is the complex role 
of pleiotropy in models of plasticity. The traits produced by a sin‐
gle genotype across multiple environments can be considered as 
separate traits correlated by pleiotropy in their underlying genes 
(Falconer, 1952), or as the expression of a functional relationship 
between continuous environmental variables and quantitative 
traits (Gomulkiewicz & Kirkpatrick, 1992). The insights gained from 
a modelling approach also depend on which features are allowed 
to evolve and which are held constant. Quantitative genetics is an 
ideal modelling framework for predicting the effects of pleiotropy 
on traits under selection, but provides no path towards understand‐
ing how mutational pleiotropy can itself evolve to modify or break 
constraints. Models with explicit genetics and genotype–phenotype 
relationships solve this problem by allowing these correlations to 
evolve, though at the cost of relying on simplistic or toy models that 
may be difficult to generalize. For example, Scheiner and Holt (2012) 
studied a model with both plastic and nonplastic loci and tuned the 
number of each to control pleiotropy among new mutations; Draghi 
and Whitlock (2012) used a developmental model that computed 
phenotypes from environmental inputs and genetically encoded 
connections between nodes in a computational network.

Although these theoretical studies have shed light on the eco‐
logical circumstances that allow plasticity to render a benefit, less 
theoretical attention has been paid to the factors that might spe‐
cifically stall or block the early stages of the evolution of a plastic 
adaptation. Here I focus on the scenario of how plasticity might 
evolve in a population that is well‐adapted to one environment and 
then encounters patches of a second environment requiring a dif‐
ferent optimal phenotype, and distinguishable from the ancestral 
environment via an informative cue. This general scenario might 
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describe a number of possible circumstances such as range expan‐
sion across a heterogeneous landscape, the evolutionary emergence 
of heterogeneity in a resource or host, or migration of competitors 
into some portion of a range. Two additional stipulations make this 
scenario more specific: first, I model the case in which the environ‐
mental cue that serves to signal the appropriate response differs 
only in degree, not in presence, between the two environments. 
Therefore, a mutation that causes the developmental process to be‐
come sensitive to this cue will show pleiotropy—affecting the trait 
in both environments—and therefore reduce fitness in the environ‐
ment for which the phenotype was already optimal. A second prem‐
ise of the model is the assumption that the initial mechanisms for 
sensing signals and producing responses are likely to have limited 
acuity and precision, leading to stochastic expression of the phe‐
notype. This principle is embodied by the metaphor of genotypes 
as computer programs that stochastically execute instructions; the 
model is a simplified programming language using fuzzy logic in a 
representation of the inherently stochastic biology of sensing and 
responding to signals. This approach follows in a tradition of using 
algorithms for information processing inspired by computer science 
to stand in for the unknown complexities of genotype–phenotype 
maps, including gene network models using the framework of neu‐
ral networks (starting with Wagner, 1996) and the AVIDA system, in 
which computer programs compete for space in virtual ecosystems 
(Ofria & Wilke, 2005). The promise of this kind of approach is that 
such models capture high‐level, abstract features of genotype–phe‐
notype relationships like epistasis and degeneracy (many genotypes 
coding for each distinguishable phenotype). Validating this potential, 
such approaches have yielded general insight into evolutionary top‐
ics like mutational robustness (Bergman & Siegal, 2003), evolvability 
(Draghi & Wagner, 2009), complexity (Adami, Ofria, & Collier, 2000) 
and plasticity (Fierst, 2011).

Using this simulation model along with analytic formula for mean 
fitness, I investigate how robustness to intrinsic noise evolves and 
limits the evolution of a plastic response. I find that the evolution 
of robustness to this development stochasticity sharpens the focus 
of natural selection, consequently limiting the success of early mu‐
tational steps towards an adaptive plastic response. After demon‐
strating the generality of this effect in an analytic framework, I test 
if phenotypic variability predicts evolvability for plasticity in my 
computational simulations, and if the cause of this correlation is 
specific to the effects of phenotypic noise on selection. After a pre‐
liminary finding that the evolution of increased robustness to noise 
does impede the evolution of plasticity, I derived six secondary 
predictions that would specifically support my hypothesized mech‐
anism for this link. These are: (1) robustness to phenotypic vari‐
ability should be correlated with low ability to evolve plasticity, (2) 
genotypes must be able to produce plastic mutations regardless of 
phenotypic variability, (3) plastic mutations should generally show 
pleiotropy,	 (4)	 weaker	 selection	 should	 improve	 evolvability	 for	
plasticity, (5) low phenotypic variability should not be generally as‐
sociated with low evolvability in other contexts and (6) deleterious 
mutations should not be required intermediaries in the evolution 

of plasticity. The second prediction stems from the hypothesis that 
the primary effect underlying the observations is not merely a de‐
velopmental constraint that limits plastic mutations to more vari‐
able genotypes; the third prediction follows from the premise that 
pleiotropy constrains the fitness of plastic mutations. The fourth 
expectation—that weaker selection will improve evolvability for 
plasticity—is based on the idea that increasing phenotypic variation 
is mathematically similar to increasing the width of the Gaussian 
fitness function, whereas the fifth and six hypotheses delimit my 
specific hypothesis for how stochastic variability reshapes selec‐
tion on plastic mutants. My results confirm each of these hypothe‐
ses within the scope of this computational model. Together, these 
results highlight a potentially generic and novel pathway by which 
random phenotypic variability can stimulate innovation and show 
that this hypothesis explains constraint in a complex model of de‐
velopmental information processing.

2  | MODEL & METHODS

Below I first derive an analytic simplification of fitness in a hetero‐
geneous environment and analyse the effects of phenotypic vari‐
ability on mutations conferring plasticity. In the subsequent section, 
I motivate the design of a computational model designed to explore 
phenotypic variability and the evolution of plasticity, then proceed 
to a detailed description of its methods.

2.1 | Analytical formula for selection on 
plastic mutants

Consider an organism that produces a focal trait z, which takes on 
continuous, nonnegative values depending on the genotype, envi‐
ronment and random factors. Assume that the distribution of phe‐
notypes can be modelled as Gaussian with a mean μ and a variance 
σ2. The environment imposes selection which is also modelled as a 
Gaussian function; specify the width of the selection function with 
the variance parameter �2

opt
, the optimal phenotype in environment 

1 as zopt(1) and the optimum in environment 2 as zopt(2). The mean 
fitness of a Gaussian distribution of phenotypes under Gaussian se‐
lection is the solution of the following integral:

The solution of Eq. (1) yields a useful, classical result (e.g. Lande, 
1976; Bull 1987) for mean fitness in a single environment:

To extend this model to a heterogeneous environment, con‐
sider that within a generation individuals have a probability p to 
live and experience selection in environment 2 and a probability 
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(1	−	p) to experience environment 1. Offspring from each environ‐
ment enter a common pool, then disperse randomly among envi‐
ronments to form the next generation of adults; this population 
model corresponds to the hard selection model considered in Via 
and Lande (1985). The mean fitness of a genotype with mean phe‐
notypes μ(1) in environment 1 and μ(2) in environment 2 and phe‐
notypic variances σ2(1) in environment 1 and σ2(2) in environment 
2, is therefore the weighted arithmetic average of its mean fitness 
in each environment:

To understand the link between phenotypic variability and the 
evolution of plasticity, consider the competitive fitness of mutants 
arising in a population of organisms that meet two criteria: they 
are well‐adapted to a single environment (environment 1) and ex‐
press no latent plasticity if exposed to other environments. I then 
analyse the effects of two other determinants of mutant fitness: 
pleiotropic effects that link a mutant's effects in environments 1 
and 2, and the phenotypic variability expressed by both the resi‐
dent and mutant genotypes. Figure 1 illustrates a hypothesis that 
mutations conferring some initial quantity of plasticity face two 
issues in competing with resident types well‐adapted to a single 
environment: mutants may have reduced fitness in environment 
1 through pleiotropic effects, and they may fail to gain much fit‐
ness by producing a phenotype in environment 2 that falls short 
of zopt(2). Greater intrinsic variability in the resident and mutant 
phenotypic distributions would serve to mitigate both problems 
by effectively broadening the fitness function around each op‐
tima, which is illustrated as follows. The landscape plot of mutant 
fitnesses in Figure 1(d), drawn from comparisons of mutant and 
resident mean fitnesses computed with Equation 3, show that 
low‐variability genotypes depend on mutations with both a high 
degree of accuracy to the optimum phenotype in environment 2, 
and a low pleiotropic side effect on the trait in environment 1. 
Figure 1(d) shows that both restrictions are relaxed as the variabil‐
ity of the resident genotype increases. One implicit assumption of 
this analysis is that the mutant and resident have the same degree 
of phenotypic variability; increased variability in the mutant might 
still improve its fitness in the novel environment, but would intro‐
duce a new cost in the ancestral environment due to the relative 
imprecision of the mutant compared to the resident.

Pleiotropy is a common feature of models of plasticity that 
consider a linear reaction norm where the mean phenotype is de‐
termined by the addition of an intercept parameter and the prod‐
uct of a slope parameter and an environment cue value. Under this 
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F I G U R E  1   An illustration of the fitness effects of correlated 
mutations in genetic backgrounds with different degrees of 
phenotypic variability. (a) Fitness landscapes in environments 
1 and 2. (b) A pleiotropic mutant in a low‐ variability genotype 
(σ = 75) that produces a plastic response of (z(1) = zopt(1) + 150, 
z(2) = zopt(1) + 750); there is a pleiotropic response in z(1) to the 
plastic response in z(2). Dashed lines illustrate the distribution of 
the mutant phenotypes in both environments in comparison to 
the resident type, shown in solid lines, which is well‐adapted to 
environment 1. This mutant gains little fitness in environment 2 
and loses more fitness through its effects in environment 1; the 
combination of a small benefit in environment 2 and a large cost 
in environment 1 make this mutation deleterious. (c) The same 
mutant as in (b), in a genetic background with higher variability 
(σ = 150). (d) Fitness of mutants with the change in z(2) indicated 
on the x‐axis, and a correlated proportional increase in z(1) as 
indicated on the y‐axis, for three different variability backgrounds. 
The example mutation shown in panels (b) and (c) is marked with 
a cross. Resident and mutant types are assumed to have the same 
values of σ for these calculations, which are made using Eq. 3 
for p = 0.5. Deleterious mutants are defined as having selection 
coefficients s	<	–0.001;	nearly	neutral	have	–0.001	≤	s < 0.001, 
moderately	beneficial	have	0.001	≤	s < 0.1, and highly beneficial 
have s	≥	0.1.	Note	that	‘ideal	plastic	mutations’—those	with	no	
pleiotropy and exactly the correct change in z(2)— are always 
beneficial; it is those mutations that fall short of the ideal in either 
size or pleiotropy that can be flipped from deleterious to beneficial 
with higher variability
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parameterization, a change to either the slope or intercept term af‐
fects the trait across all environments (excepting that the trait value 
when the cue equals zero is not affected by changes in slope). This 
kind of model has been used frequently in studies of the evolution of 
plasticity (e.g. De Jong & Gavrilets, 2000; Lande, 2009; Leimar et al., 
2006; Scheiner, 2013), though critics note that other parameteriza‐
tions can produce different results (Ergon & Ergon, 2017). Although a 
change to either the slope or intercept term is pleiotropic, such mod‐
els should not be taken as a statement that distinct sets of genes con‐
trol the slope or intercept (de Jong, 1990); rather, such models reflect 
the idea that genes may affect both trait means and their sensitivities 
to environmental cues, causing pleiotropy among trait values in dif‐
ferent environments. Because only two environments are considered 
here, the degree of pleiotropy can be captured by a single parameter 
without invoking this assumption of a linear reaction norm.

This analysis shows a general argument connecting pheno‐
typic variability with the evolution of plasticity in a scenario mim‐
icking niche expansion: a population without a history of plasticity 
encounters a new, distinct environment. Using the computational 
model below, I applied this idea to understand simulations of this 
same scenario with a much more complicated genotype–phenotype 
mapping and the full complexities of an individual‐based population 
simulation.

2.2 | COMPUTATIONAL MODEL OF 
DEVELOPMENT WITH NOISE

2.2.1 | Motivation & design considerations

My computational model was designed to represent the flow of in‐
formation from the detection of a stimulus through to gene regula‐
tion and ultimately the production of a trait across developmental 
time. This information flow is simulated as the execution of a virtual 
computer program in a highly simplified language; an individual's 
genotype determines this program, and its phenotype is produced 
by executing that program. This representation of development is 
clearly quite abstracted from the biology of gene regulation and ex‐
pression, and its value depends on how well it captures relevant and 
generic features of biological information processing. This model 
was designed to represent three features that might generally char‐
acterize the early evolution of an adaptive plastic response. These 
are: that the evolution of plasticity involves increased sensitivity to 
some environmental cue, that some degree of noise or randomness 
affects each stage in the detection and processing of a cue and the 
organism's response and that the complexity of the plastic response 
should be allowed to vary via mutation.

This first feature—sensitivity to a cue—is represented in the 
model by an external cue: a positive real number that is tightly cor‐
related with the optimal trait value in a given environment. The rel‐
evance of this modelling choice becomes clear when we imagine the 
evolution of plasticity unfolding in two stages. First, a population is 
challenged to adapt to a single, constant environment, in which the 
cue has a non‐zero value but is not informative. Then, the population 

is exposed to a mix of this older environment and a novel habitat 
in which both the cue and the optimal phenotype are significantly 
larger. If the expression of a mutation that causes the organism to 
become sensitive to the cue is pleiotropic—affecting the phenotype 
in both environments—then that pleiotropy could constrain or com‐
plicate the evolution of plasticity by creating maladaptation in the 
environment to which the organism is already well‐adapted.

The second major feature of the model's design is noise. As de‐
tailed below, the fuzzy logic encoded in the mechanics of the vir‐
tual programs introduces randomness in both the ascertainment of 
a cue and the realized response. The degree of this noise, and its 
consequences for phenotypic variability, can mutate and be tuned 
by natural selection. A previous publication explored how noise can 
mutate and evolve in a complex and more realistic model of gene ex‐
pression (Draghi & Whitlock, 2015); here I simplify that approach to 
focus on the general phenomenon of random variability in biological 
systems and its potential effects on the evolution of plasticity.

The third desired feature is that a plastic response should not 
be constrained to a prespecified function, such as a linear reaction 
norm, but allowed to evolve along a spectrum from simple to com‐
plex. The model attains this goal by allowing the complexity of the 
underlying virtual program to mutate and evolve by rough equiva‐
lents to insertion and deletion mutations. Each program is made up 
of a series of instructions, and an instruction may be tweaked by 
mutation, deleted, or added de novo from a space of random instruc‐
tions. This variety of mutation effects allows genotypes and the 
corresponding reaction norms to change in complexity when such 
changes are beneficial.

2.2.2 | Genotype–phenotype model

Each genotype contains instructions that direct a developmental 
process to produce a single trait, z; every genotype has the potential 
to use a cue, y, from the environment in this developmental process. 
At the beginning of development, z was set to zero or, in specific sim‐
ulations, to a random value from a Gaussian distribution; y was set by 
the environmental condition of the organism's development and did 
not change over the course of that development. The development 
of the trait z was determined by executing the program contained in 
that organism's genotype. To simulate random influences in develop‐
ment, several aspects of the behaviour of these programs are deter‐
mined stochastically in accordance with mutable noise parameters.

A genotype consists of an ordered list of instructions of three 
possible types, each illustrated in Figure 2. Addition instructions 
add (or subtract) a Poisson‐distributed random number to the cur‐
rent value of z. An addition instruction is defined by its sign (posi‐
tive or negative), the mean of the Poisson and a coefficient which 
multiplies the result of the Poisson, as well as by its location in the 
program. The second type of instruction is a goto statement; when 
executed, these statements cause the execution of the program to 
jump to another line. Goto statements are defined by their loca‐
tion in the code, the location to which they direct execution, and a 
third parameter defining a chance of success; in the case of failure, 
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execution of the program instead moves to the next line. The final 
type of instruction is a conditional statement. These statements 
execute the next line of code if a condition is met; otherwise, pro‐
gram execution skips the following line and continues with any 
subsequent lines. In a typical programming language, a conditional 
statement might compare a variable to a constant and then direct 
program flow based on whether the variable was larger or smaller 
than the constant. Here, conditional instructions apply a sigmoid 
function to the difference of a variable and a constant to produce 
a probability; a Bernoulli trial is then performed with that probabil‐
ity to determine whether the subsequent line should be executed 
or	skipped.	This	essentially	produces	a	‘fuzzy’	version	of	an	if‐then	
statement, with the chance of an error being proportional to the 
difference between the variable and the number it is compared to. 
Conditional instructions are defined by three parameters: the focal 
variable, which is either the trait z or the cue y, a value to which 
that focal variable is compared, and a parameter determining the 
steepness of the sigmoid function near zero. Let x stand for either 
the phenotype z or the environmental cue y, a stand for the sign 
of the comparison (i.e. when a is positive, the condition tests if the 
variable is greater than the constant), let b stand for this steepness 
parameter and c stand for the constant against which the variable 
is	compared.	The	probability	that	the	condition	evaluates	as	‘true’	
and the subsequent line is executed as:

Program execution begins with a genotype's first instruction and 
continues until either the last line is executed (without a redirec‐
tion from a goto instruction) or until a preset maximum number of 
executed lines is reached. This maximum is sixty for all the results 
shown here.

Goto and conditional statements do not individually correspond 
to any obvious feature of biological regulation; they were imple‐
mented in this simplified language because, in combination, they can 
produce both positive and negative feedback loops. To make sure 
that evolving programs could readily produce new loops by muta‐
tion, I allow for a special mutation operator described below that 
introduces a conditional statement and a subsequent goto statement 
in a single mutation. This feature essentially allows a new regulatory 
loop to emerge via a single mutational step.

2.2.3 | Reproduction and selection

Reproduction is asexual and based on the Wright‐Fisher model of a 
fixed population size N. The next generation is formed by selecting a 
parent for each of N offspring. Each parent is drawn with replacement 
from a multinomial in which each member of the parent generation 

(4)ptrue=
1

1+e−ab(x−c)

F I G U R E  2   Examples of evolved 
genotypes (programs) and phenotypes 
(trait distributions). Top: An ancestor 
(program A; dark grey distribution) and 
evolved descendant (program B; light 
grey distribution) subject to stabilizing 
selection in one environment (the black 
line represents the fitness function). The 
numbers in brackets after conditional 
statements measure their specificity; 
the range shows values of the variable 
that cause the statement to evaluate 
as true with 10% and 90% probability, 
respectively. Bottom: An ancestor (C; dark 
grey) and evolved descendant (D; light 
grey) subject to stabilizing selection with 
distinct optima in two environments
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has a chance to be selected proportional to their fitness, regardless 
of the environment occupied by that parent. This procedure is often 
labelled	 as	 ‘hard	 selection’	 because	 the	 two	 environments	 do	 not	
have individual carrying capacities, but rather contribute offspring 
to a single pool with a single carrying capacity N. Two factors would 
make the inclusion of recombination here problematic: the model 
does not have an explicit chromosome arrangement of genes, and 
genotypes in the same population might differ in the lengths of their 
genetically encoded instructions. I therefore did not pursue vari‐
ants of the model with sexual reproduction. An individual's fitness 
is based on the phenotype, z, produced by the execution of their 
genotypic program and the Gaussian fitness function below.

Here ω is a constant inversely proportional to the strength of 
stabilizing selection, x indicates the selective environment, and ε is 
a small constant, set to 1 × 10–6, which ensures that the multinomial 
sampler is robust to round‐off error.

The default choices of fitness‐function parameters are 
ω2 = 10,000, zopt(1) = 1,000 and zopt(2) = 2,000. The cues provided in 
each environment are similarly y(1) = 1,000 and y(2) = 2,000.

2.2.4 | Generating, mutating and testing genotypes

Sequences of the three types of instructions explained above con‐
stitute genotypes that, when executed as programs, produce pheno‐
types. Genotypes are randomly created by first drawing a number 
of instructions from the uniform distribution of integers [1,10]. Each 
instruction is then chosen to be an addition, conditional, or goto state‐
ment with equal probability. The coefficients and Poisson rates for 
addition instructions are drawn from exponential distributions with 
default means βcoeff = 50 and βrate = 10, respectively; the sign of the 
instruction	is	drawn	uniformly	from	[−,+].	Goto instructions succeed 
with probability psucceed=1−e−f, where values of f are drawn from 
an exponential with default mean βfail = 1. Upon creation, a goto in‐
struction's target line is drawn uniformly from the total length of 
the program, including the new goto instruction itself. Conditional 
instructions have a sign parameter which is drawn uniformly from 
[−,+],	a	slope	parameter	which	is	drawn	from	an	exponential	with	de‐
fault mean βslope = 0.002, and a threshold constant which is drawn 
from an exponential with default mean βthreshold = 1,000.

Mutations can modify an existing instruction, delete it, or in‐
sert a new instruction with rates μmodify, μdelete and μinsert. Goto 
statements point to an instruction, not a line number, and there‐
fore redirect program flow to the same line even if intervening 
statements are added or deleted. If a goto statement's target state‐
ment is deleted, its target is reassigned to an adjacent statement. 
Conditional statements always interact with their subsequent line, 
such that their behaviour can be changed by an insertion or de‐
letion. Insertion mutations are implemented in two varieties: for 
one‐half of insertion mutations, a new statement is generated as 

above and added to a uniformly drawn location in the program. 
For the other half, a pair consisting of a conditional statement and 
a subsequent addition or goto statement is generating together, 
as described above, and inserted as a pair. This complex mutation 
operator is intended to allow a de novo regulatory loop to evolve in 
a single mutational step.

Genotypes are tested by repeated executing their programs and 
tracking the means (z̄

(
1
)
andz̄

(
2
)
) and standard deviations 

(�
(
1
)
and�(2)) of the phenotypes produced in environments 1 and 2. 

Ancestors for evolution experiments were generated randomly and 
then rejected if they are too far from the optimum in environment 

one ( |||z̄
(
1
)
−zopt

(
1
)|||>50), too plastic (z̄

(
2
)
− z̄

(
1
)
>50), or too vari‐

able (�
(
1
)
> 800). The rationale for the first two choices was that I 

wanted to focus on the evolution of reduced phenotypic variability 
and its effects on the innovation of plasticity; the reason behind the 
third was to exclude extremely unfit genotypes. These statistics are 
based on at least 10,000 replicate executions of the genotypic pro‐
gram in each environment.

High‐fitness genotypes were sampled from populations by first 
selecting a random sample of fifty individuals, then computing the 
mean fitness of each sampled genotype in each environment over 
10,000 replicates. The individual with the highest mean fitness was 
then chosen as a representative of the population for further analy‐
ses; to avoid bias, its statistics were re‐measured with another set of 
10,000 replicates and the re‐measured values were used to charac‐
terize its performance.

In experiments surveying plastic mutations, I simulated the de‐
velopment of each mutant with 1,000 replicate simulations for each 
environment and screened for mutants that produced a positive 
plastic response z̄

(
2
)
− z̄

(
1
)
>100. For any genotypes that met the 

criterion in this initial screening, I repeated this analysis for 100,000 
replicates and averaged the results to more precisely characterize 
their phenotypes. The purpose of this two‐stage procedure was to 
quickly screen a large number of mutations for their potential to 
contribute to adaptive plasticity, and then evaluate each candidate 
mutation at a higher level of statistical certainty. I also performed a 
modified version of this procedure to assess how phenotypic vari‐
ability might shift the distributions of the fitness effects of muta‐
tions. In these simulations, whose results are shown in Figure S5, 
Gaussian noise is added to the phenotype of each individual after 
development and the effects of this noise on both the parent and 
mutant mean fitnesses are calculated for the case of a heteroge‐
neous environment (both types of environments present in an equal 
mix). This procedure effectively assays whether a mutation confer‐
ring some degree of plasticity would be more likely to be beneficial 
if it had occurred in a genetic background with a higher degree of 
phenotypic variability.

2.2.5 | Exploration of the simulation model

To qualitatively explore the evolution of robustness in the simula‐
tion model, I applied stabilizing selection for an optimal phenotype of 

(5)w=�+
�
1−�

�
exp

⎛
⎜⎜⎝
−
�
z−zopt (x)

�2
�2

⎞
⎟⎟⎠
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zopt(1) = 1,000 to large populations (N = 10,000) of haploid genotypes. 
Asexual reproduction was accompanied by three types of mutation: 
an individual's parameters were modified at a rate of 1 × 10−3/in‐
struction, instructions were deleted at a rate of 2 × 10−4/instruction, 
and new instructions were inserted at a rate of 2 × 10−4/individual. In 
these initial simulations, each organism was exposed to only one en‐
vironment with an invariant cue, y(1), and optimal phenotype, zopt(1). I 
investigated the evolution of plasticity in other simulations by adding 
the complexity of a second environment with a distinct cue, y(2), and 
optimum, zopt(2). In each generation, an individual resided in environ‐
ment 2 with probability p	and	environment	1	with	probability	1	−	p; 
an individual developed and was selected in the same environment, 
and generations were nonoverlapping with a fixed population size N.

Figure 2 shows examples chosen to qualitatively illustrate how 
genotypes evolve to produce either a single phenotype or a plastic 
response. Developmental programs could evolve to become more 
robust to the internal noise generated by the fuzzy logic of their 
components. Plastic responses could also evolve and become more 
robust over time, as exemplified in the bottom of Figure 2. Figure 
S1 illustrates some of the diversity of reaction‐norm shapes seen 
among genotypes selected for plasticity, confirming that the com‐
putational model could produce a variety of nonlinear relationships 
between the cue and the mean and variability of the trait. These re‐
action norms give an indication that the pleiotropic effects of a mu‐
tation are likely to vary substantially depending on the genotype.

2.2.6 | Measuring the evolvability of plasticity

To measure evolvability, many independent subpopulations were 
founded using the sampled genotype and allowed to evolve in paral‐
lel for a thousand generations in a scenario with within‐generation 
environmental heterogeneity (p = .5). This procedure focuses on 

measuring the evolvability associated with mutations arising in the 
context of a single genotype; the alternative of subjecting the entire 
population to evolution experiments would confound the influence 
of a genotype's mutational variability with the standing genetic vari‐
ation present in that population. After a test period of a thousand 
generations, I measured the evolved plasticity of a high‐fitness in‐
dividual in each test population as the mean phenotype in environ‐
ment 2 minus the mean phenotype in environment 1; the fraction 
of populations in which this plastic response exceeded 200 units 
(20% of the expected optimal response) was taken as a measure of 
the propensity of a genotype to evolve plasticity in a heterogeneous 
environment. None of the assayed genotypes had attained signifi‐
cant plasticity in their original, single‐environment populations, and 
changing the threshold of 200 units to larger values did not change 
the pattern of the results (data not shown).

I also performed a version of this procedure simulating strong se‐
lection, weak mutation conditions: each mutation is allowed to fix or 
go extinct before another is introduced. The purpose of this protocol 
was to eliminate any possible constructive role for deleterious muta‐
tions; this was an important control because phenotypic variability 
also affects the strength of genetic drift and therefore the chances 
of deleterious mutations reaching high frequencies. To begin this 
procedure the mean fitness of a resident genotype is computed over 
10,000 trials in each environment. Then, a random mutant is gen‐
erated from this genetic background and its fitness assessed. If the 
mutant is more fit on average, it replaces the resident; otherwise it 
is discarded. In either case, this process is repeated for a set number 
of cycles (here, 1,000), and the plasticity of the final resident was 
evaluated. This process was repeated in replicate for each of the two 
hundred genotypes assayed above, and the mean evolvability for 
plasticity was calculated and compared to the results obtained from 
the individual‐based simulations reported in Figure 3.

F I G U R E  3   Evolution of phenotypic variability (standard deviation of replicate development trials) and the propensity to evolve plasticity. 
(a) Mean and confidence intervals at four time points for an ensemble of fifty replicate populations (see Methods). (b) Values for each 
population at t = 100,000 generations (note the change in y‐axis scale versus the (a) panel). Variabilities are measured over 100,000 replicate 
developmental simulations and evolvability is averaged across 500 trials per population
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2.2.7 | Statistical analyses

All analyses were carried out in R v.3.3.3. Generalized linear mixed‐
effect	models	were	performed	using	the	‘lme4’	package	v.1.1–15.

2.2.8 | Code and data management

Code for simulating genotypes and populations was written in C. All 
code, including R scripts and data files, will be archived at the Dryad 
Digital Repository.

3  | RESULTS

3.1 | The potential for plasticity to evolve decreases 
as robustness evolves in a homogenous environment

To quantify both the evolution of robustness and the propensity 
for genotypes to rapidly evolve plasticity (i.e. evolvability for plas‐
ticity), I evolved fifty replicate populations under stabilizing se‐
lection for a single environment (p = 0). These populations were 
initiated by randomly producing genotypes and selecting fifty 
individual ancestors that were close to the optimal phenotype, 
were not plastic, and were not excessively phenotypically vari‐
able—see Model & Methods for details. Each ancestor was used to 
found a distinct population, and populations evolved in parallel for 
100,000 generations. A high‐fitness genotype was sampled from 
each population at t = 0, 1,000, 10,000 and 100,000 generations 
and its phenotypic variability and ability to evolve plasticity in 
the appropriate environment were measured as described above. 
Examples of evolved plastic responses are shown in Figure S1.

Figure 3(a) shows the mean phenotypic variability (standard de‐
viation in environment 1) and evolvability for plasticity for the four 
sampling intervals. There is a clear trend for both variability and 
evolvability for plasticity to decrease in concert. This trend is also 
found at lower and higher mutation rates (Figure S2). I explored the 
possibility of a causal link between variability and evolvability by 
first performing a more rigorous statistical analysis of these data. As 
the evolved levels of plasticity is bimodal, with one mode near zero 
and a second near the optimal value of 1,000, I treated evolvabil‐
ity as a binomial variable within each trial (again using a cut‐off of a 
mean plastic response of 200 units) and calculated the log odds ratio 
of success for the five hundred replicate trials performed for each 
examined genotype. I then applied linear regression to this response 
variable with evolutionary time (generations in the static environ‐
ment) and variability as predictors (each centred and scaled by their 
standard deviations). Both variables are highly significant with or 
without the inclusion of their interaction, and together they capture 
around half of the variation in evolvability among genotypes (R2 is 
0.487	without	the	interaction	and	0.573	with	that	term).	The	predic‐
tive value of variability is evident within a time point, as in Figure 3(b), 
which shows variability and evolvability for the 100,000‐generation 
time point only. Note, however, that there is little relationship be‐
tween phenotypic variability and evolvability for plasticity among 

the genotypes at t = 0, before evolution has occurred (Spearman's 
ρ = 0.07).

The significance of both time and the phenotypic standard 
deviation suggests that some additional, unknown aspect of the 
genotype or its dynamics is evolving with the effect of reducing 
evolvability for plasticity. I considered three candidates—skew of 
the phenotypic distribution, number of instructions in the geno‐
type, and the mean number of developmental steps (i.e. instruc‐
tions executed) in the genotype's development. Skew might arise 
if a genotype's program occasionally executed a line that made a 
large, positive contribution to the phenotype, and might allow a 
genotype to produce large, adaptive phenotypes more often than 
expected from the mean and variance of the distribution. Each 
variable was added individually to the simpler model (without the 
interaction) described above. Only the addition of the mean num‐
ber of developmental steps substantially improved the fit (from an 
R2	of	0.487	to	0.686)	and	lowered	the	AIC	(from	611.9	to	515.5).	
Removing evolutionary time from this model decreases the R2 and 
AIC only marginally (R2	is	0.672	and	AIC	is	522.4),	suggesting	that	
the number of developmental steps captures most of the informa‐
tion in the time variable.

I then asked whether the mean number of developmental 
steps was higher in programs that used negative feedback to re‐
duce phenotypic variability. I inferred the presence and strength 
of negative feedback by perturbing the initial phenotype before 
development. Although normally the trait value begins at zero, 
in these assays each individual instead began with a phenotype 
drawn from a Gaussian with mean of zero and standard deviation 
of σ initial and was then allowed to develop according to its pro‐
gram. The phenotypic variability in these perturbed genotypes, 
σperturbed, can be compared to the variability seen in the absence 
of feedback, σcontrol. We can then write a measure of the response 
to this perturbation:

Without feedback control, the variance contributed by devel‐
opment is predicted to combined additively with the variance of 
the starting phenotype. Therefore, the response r is expected to 
be one for genotypes without feedbacks, with deviations towards 
zero measuring the extent to which negative feedback diminishes 
the added variability (values above one would indicate positive feed‐
back). Although initial genotypes show little evidence of feedback 
control over variability, over time many populations evolve sub‐
stantially lower values of r (Figure S3) which was associated with 
more	complex	development	(higher	mean	number	of	steps).	Figure	4	
shows that negative feedback, as measured by Equation 6, is asso‐
ciated with both lower variability and lower evolvability. This figure 
also explains the bimodality in evolvability and robustness seen in 
Figure 3(b): most populations have either a high degree of negative 
feedback or very little. The fit of a linear regression including evolu‐
tionary time, variability, and the response variable in Eq. (6) is nearly 

(6)r=
�2
perturbed

−�2
control

�2
initial
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identical to the model with time, variability and mean developmen‐
tal steps (R2 of 0.669 and 0.686, respectively), suggesting that this 
response measure is capturing the relevant information in develop‐
mental complexity.

The main hypothesis detailed in the analytical model is that phe‐
notypic variability is a primary driver of the evolvability of plasticity 

in this model specifically because of its effects on the balance of 
selective forces on plastic mutations with pleiotropic effects. To 
test hypotheses (2) and (3) described in the Introduction, I exam‐
ined one hundred thousand random single mutations for each of the 
high‐fitness genotypes selected at t = 10,000. Among these muta‐
tions, I found no relationship between phenotypic variability and the 

F I G U R E  4   Relationships between phenotypic variability and the ability to evolve plasticity for genotypes with little (open circles), 
moderate (grey circles), or strong (black circles) negative feedback. (a) Genotypes sampled from t = 1,000; (b) genotypes sampled from 
t	=	100,000.	‘Little’	feedback	is	defined	as	a	response	to	perturbation	above	0.9	(see	Eq.	3),	‘moderate’	as	a	response	between	0.5	and	0.9,	
and	‘strong’	as	a	response	below	0.5.	Note	the	different	axes	ranges	between	(a)	and	(b)

F I G U R E  5   Evolvability for plasticity 
under strong (ω2 = 10,000) and weak 
(ω2 = 20,000) selection, separated by the 
generation of the sampled genotype
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ability to produce plastic mutations with high fitness in environment 
2 (measured as the highest‐fitness mutant in environment 2 alone; 
Figure	S4(a)).	Among	mutations	 that	produced	a	 significant	plastic	
response, correlations between the change in z(1) and z(2) were typ‐
ically high (mean Pearson's r is ~.93) and not correlated with phe‐
notypic	variability	(Figure	S4(b)).	I	also	examined	the	distribution	of	
potentially beneficial, plastic mutations in more detail for a random 
set of five populations. Across each of the four time points, I sim‐
ulated two million random mutations as described above, but also 
calculated the selection coefficient of those genotypes with the ad‐
dition of varying amounts of Gaussian noise to both the parental and 
mutant phenotypes. These selection coefficients were calculated as 
the average fitness across both environments, representing the rel‐
evant fitness landscape for the evolution of plasticity as modelled 
here. After the initial time point, there is a general trend for addi‐
tional variability to increase the chances that a mutation is beneficial 
or highly beneficial (Figure S5). These examples illustrate that many 
genotypes can produce plastic mutations that would have been ben‐
eficial, had they occurred in a genetic background that produced a 
higher degree of phenotypic variability.

The next expectation—that weaker selection will improve evolv‐
ability for plasticity—was tested by repeating the evolvability assay 
described above with weaker selection (ω2 = 20,000 rather than 
10,000). Evolvability was higher under weaker selection (Figure 5); 
using nonparametric paired Wilcoxon tests, these differences were 
significant at all four time points (t = 0: mean evolvability was higher 
by 29%; t = 1k: mean evolvability was higher by 30%; t = 10k: mean 
evolvability	was	higher	by	47%;	t = 10k: t = 100k: mean evolvability 
was higher by 77%). To test the evolvability of genotypes in another 
context (hypothesis 5) I performed short evolvability assays which 

presented populations with a single, shifted environment (zopt(1) 
was shifted to 2000 to present a single, changed environment, while 
maintaining the value of the cue at 1,000). Evolvability in these sim‐
ulations was typically high; genotypes with very high phenotypic 
variability were actually less evolvable, and among evolved geno‐
types there was a slight deficit in genotypes with very low variabil‐
ity (Figure S6). These results confirm that phenotypic variability has 
a specific, positive effect on evolvability for plasticity not found in 
other contexts.

Finally, I tested whether deleterious mutations played a signifi‐
cant role in the evolution of plasticity by repeating the evolvability 
assays with a version of strong selection, weak mutation conditions 
(see ‘Measuring	the	Evolvability	of	Plasticity’	above).	This	compari‐
son, shown in Figure S7, showed that the basic pattern of diminishing 
evolvability with lower phenotypic variability was preserved using 
this alternate evolutionary algorithm, in which deleterious mutations 
could play no constructive role.

3.2 | Pleiotropic effects on performance in the 
initial environment impose the main limitations on 
evolvability of plasticity in this model

The evidence in the preceding section is consistent with the hypoth‐
esis that phenotypic variability improves the performance of plas‐
tic mutants relative to their parent genotypes in both the initial and 
novel environment, but would also fit a model in which the effects of 
random variability in one of the two environments are insignificant 
or even detrimental. I therefore repeated the evolvability assays 
while varying p, the frequency of environment 2 to allow the rela‐
tive advantage in environment 2 to vary. The correlation between 
phenotypic variability and evolvability remains high across a range 
of values of p, supporting the original hypothesis (Figure 6(top)). 
However, there is an across‐the‐board increase in evolvability as 
the frequency of the novel environment increases (Figure 6(bot‐
tom)). Because increasing p diminishes the importance of fitness in 
the original environment, the pleiotropic effects of plastic mutants 
on the phenotype in environment 1 must be the primary constraint 
on the evolution of plasticity. These results also reinforce the infer‐
ence that phenotypic variability is not correlated with the ability of 
a genotype to produce a plastic mutation, but instead shapes evolv‐
ability by relaxing selection on such mutations.

3.3 | Evolutionary history can constrain plasticity by 
favouring negative feedback

To explore the finding that negative feedback control of develop‐
mental noise is associated with lower evolvability for plasticity, I 
evolved additional populations under conditions that might select 
more strongly for robustness to noise and negative feedback specifi‐
cally. Twenty populations evolved in a single environment (p = 0) ex‐
actly as above, except that all individuals developed from a random 
initial phenotype drawn from a Gaussian with σ = 200. These popu‐
lations did evolve negative feedback more rapidly and to a greater 

F I G U R E  6   Evolvability depends on both phenotypic variability 
and the frequency of the new environment. Top: Spearman's rank 
correlation coefficient of evolvability for plasticity and phenotypic 
standard deviation for genotypes sampled from t = 100,000, across 
various values of the frequency, p, of the novel environment. 
Bottom: The mean evolvability for plasticity across these same 
genotypes
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extent (Figure 7(a)) than did the cohort in the original experiment 
without initial noise. This difference was correlated with a greater 
decrease in their propensity to be able to evolve plasticity in the ap‐
propriate environment (Figure 7(b)).

4  | DISCUSSION

The goals of this paper are to focus on selection and mutation in a 
population faced with a novel opportunity: new heterogeneity in a 
resource such that individuals may encounter either the new envi‐
ronment or the old, with distinct optimal phenotypes and informa‐
tive cues characterizing each. The nature of these environments 
and traits is treated abstractly here, but particularly relevant exam‐
ples can be found when consumers interact with invasive hosts or 
prey (Strauss, Lau, & Carroll, 2006). For example, soapberry bugs in 
Florida show evolutionary differentiation in response to the intro‐
duction of a novel plant host (Carroll, 2008). Australian snakes, well‐
adapted to handling native prey, are maladapted to invasive toxic 
cane toads (e.g. Hagman, Phillips, & Shine, 2009), and may adapt 
through learning or evolution (Shine, 2012). Another example—the 
divergence of the apple maggot fly into host races specializing on 
the native hawthorn and the introduced apple tree—demonstrates 
divergent selection (Michel et al., 2010) and is well‐known as a case 
study in sympatric speciation in progress. These examples differ 
from the simple scenario considered here in significant ways—this 
model considers plasticity evolving from initially nonplastic geno‐
types, whereas, for example, plasticity across hosts in the soapberry 
bugs is maladaptive and opposed by genetic differentiation (Cenzer, 
2017). Nonetheless, mapping the circumstances favouring the emer‐
gence of a plastic generalist may also shed light on when evolution 
may follow alternative paths such as local adaptation or speciation, 
contributing to a synthetic picture of how communities react on 
both fast and slow time‐scales to invasive species.

Natural selection drives adaptation, and yet the results presented 
here show that weakening the ability of selection to discriminate 
among phenotypes can sometimes accelerate the leap from a single 
phenotype to a plastic response. A link between relaxed selection 
and innovation is historically associated with Sewall Wright's ideas 
of shifting balance: movement between local optima on an epistatic 
fitness landscape driven by the joint action of drift and selection in 
small populations (e.g. Wright, 1982). The argument in this paper has 
superficial similarities to this, with the key difference that the model 
here does not rely on the fixation or success of deleterious muta‐
tions. Here, mutants conferring plasticity are more likely to be dele‐
terious when stochastic variability is low and selection is stringent, 
and become beneficial when phenotypic variability or relaxed selec‐
tion blur the fitness differences between a well‐adapted parent and 
a mutant with a perturbed phenotype. This switch in the selective 
coefficient of mutations, seen most clearly in the simplified calcula‐
tions presented in Figure 1, occurs because early, imperfect plastic 
responses must preserve a well‐adapted response in one environ‐
ment whereas radically changing the phenotype in another. Given 
these constraints, strong selection only exaggerates the imperfec‐
tions of a partially adaptive, plastic mutant relative to its parental 
genotype in the original environment. An interesting empirical con‐
nection is that relaxed selection has been linked empirically to the 
evolution of polyphenisms in social insects: Hunt et al. (2011) found 
that genes recruited to plastically differentiate the phenotypes of 
insects in different castes or life‐stages tended to have a prior his‐
tory of relaxed selection, as measured by dN/dS. A similar result was 
found in spadefoot toad tadpole morphs (Leichty, Pfennig, Jones, & 
Pfennig, 2012). The results here strengthen the case that relaxed se‐
lection supports the innovation of a polyphenism and adds a poten‐
tial mechanism—differences in phenotypic variability—by which the 
strength of selection in genes or traits may vary across the organism. 
Some studies have looked for correlations between plasticity and 

F I G U R E  7   Populations with noisy initial phenotypes (open circles) evolve greater negative feedback and less evolvability for plasticity. (a) 
r, the response ratio, is calculated according to Eq. 6 and is based on 100,000 replicate simulations with and without a Gaussian perturbation 
with σ = 200. (b) Evolvability assays from Figure 3 plotted with similar assays of twenty populations evolved in the presence of Gaussian 
noise in their initial phenotype
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developmental variability at the level of traits (e.g. Scheiner, Caplan, 
& Lyman, 1991) and a recent paper has documented such a relation‐
ship (Tonsor, Elnaccash, & Scheiner, 2013), reinforcing that greater 
empirical examination of this relationship would be very productive.

Understanding how constraints on plasticity arise and evolve is 
aided by the concept of modularity, defined in this context as the 
degree to which two traits are able to vary and evolve independently 
(Wagner & Altenberg, 1996). Snell‐Rood, Dyken, Cruickshank, Wade, 
and Moczek (2010) drew attention to the double‐edged role of mod‐
ularity for plasticity: genes with expression limited to only one or a 
few environments would be free to contribute to plasticity without 
pleiotropic constraints, but would also experience relaxed selection. 
Here, the model represents the evolution of modularity as a single 
set of genetic instructions that evolves to code for distinct traits. 
Future work could explore how pleiotropy continues to evolve and 
shape evolvability as parts of the genome experience both relaxed 
selection due to environment‐specific expression, and intensified 
selection as the organism adapts to produce a less noisy, more pre‐
cise response in each environment.

In a comprehensive exploration of evolution and plasticity in sim‐
ulated RNA secondary structures, Ancel and Fontana (2000) noted 
that phenotypic variability correlated with evolvability because gen‐
otypes that produced little variability were also unable to produce 
phenotypic novelties via mutation. These results exemplify the no‐
tion that random phenotypic variation is correlated with a genotype's 
mutational variation—essentially, that developmental heterogeneity 
acts as preview of which phenotypes might be expressed constitu‐
tively after a mutation (reviewed in Meiklejohn & Hartl, 2002). This 
hypothesized link between developmental and mutational variability 
is an intriguing hypothesis for a role of phenotype variability in inno‐
vation (Tawfik, 2010) and evolvability (Stewart, Parsons, & Plotkin, 
2012). Although superficially similar, this role of variability is distinct 
from the mechanism by which variability boosts evolvability in this 
paper; essentially, here variability changes how selection sees the 
phenotypes of mutations, rather than changing what those mutant 
phenotypes are. Therefore, the two mechanisms by which random 
phenotypic variability shapes evolvability might occur in concert and 
reinforce each other.

Stochastic phenotypic variability has interested evolutionary bi‐
ologists for many decades, with several models considering random 
phenotypic variation as one of several alternative, competing strate‐
gies whereby populations could adapt to environmental uncertainty. 
Bull (1987) was one of the first papers to examine stochastic pheno‐
typic variation and genetic variation as competing solutions, inspiring 
other models that ask if stochastic variation can outcompete other 
solutions	 like	 specialization	 and	 local	 adaptation	 (Scheiner,	 2014a;	
Svardal,	Rueffler,	&	Hermisson,	2011)	or	plasticity	(Scheiner,	2014b;	
Tufto, 2015). The results here illustrate a relationship between plas‐
ticity and stochasticity that is orthogonal and complementary to the 
approaches	 in	Scheiner	 (2014b)	and	 (Tufto,	2015):	plasticity	might	
adaptively outcompete random phenotypic variation, but that same 
variation may be a necessary stepping stone allowing plasticity to 
emerge. This perspective particularly complements the findings in 

a recent model of the relationship between expression variability 
and the evolution of gene regulation (Wolf, Silander, & Nimwegen, 
2015). This paper shows that evolved promoters may be noisier 
than expected given the space of possible promoters, and highlights 
that noisy regulation, even without any signal associated with an in‐
formative cue, can evolve through the benefits of diversifying bet‐
hedging. This result highlights another aspect of stochasticity and 
plasticity: the reliability of cues. Previous models have shown that 
cue unreliability decrease the optimal plastic response (Tufto, 2000) 
and, in models with explicit ecology, put high‐plasticity populations 
at a greater risk of extinction (Reed, Waples, Schindler, Hard, & 
Kinnison, 2010). More recent work has continued to probe the com‐
plex relationship between bet‐hedging and plasticity (Tufto, 2015): 
by modelling the specific nature of cue stochasticity (Donaldson‐
Matasci, Bergstrom, & Lachmann, 2013), measuring their correla‐
tion	in	wild	populations	(Simons,	2014),	or	experimentally	evolving	
bet‐hedging through sensitivity to an uninformative cue (Maxwell 
& Magwene, 2017). Consideration of these studies and the current 
paper highlight the complexity of the relationship between stochas‐
ticity and plasticity and argue for precision in how that stochasticity 
is discussed and quantified.

There are a number of differences between the gene‐expression 
framework of Wolf et al. (2015) and the reaction‐norm concept in 
this paper that could lead towards productive future work. One in‐
triguing difference is the role of variability contributed by the ex‐
pression of a transcription factor; the results in Wolf et al. (2015) 
suggest that transcription factors with noisier expression might be 
more likely to be beneficial if recruited during the evolution of regu‐
lation. Further modelling studies could decouple the roles of cis and 
trans sources of noise for the evolution of a focal gene and therefore 
derive predictions for the ways in which gene networks could evolve 
to gain adaptive plasticity.

The	choice	to	invent	a	‘toy’	programming	language	as	the	geno‐
type–phenotype model for this study was driven by the urge to ad‐
dress very general questions about plasticity and its evolution. This 
fuzzy‐logic programming language serves as a high‐level model for 
a system of biological decision‐making in which noise affects every 
level: perception of a signal, computation of a response, and execu‐
tion of that response. Although the language of the simulation model 
was inspired by the particulars of decision‐making in a computer 
program, the choices of instructions were also motivated by biolog‐
ical dynamics. The addition instruction uses a Poisson distribution 
to represent the effects of randomness in gene expression with a 
cell, whereas the conditional and goto statements act jointly to mimic 
feedback in the regulation of a gene. Although negative feedback dy‐
namics are ubiquitous in biology, autoregulation at the level of gene 
expression has been shown to reduce (Becskei & Serrano, 2000) 
but not eliminate expression noise (Lestas, Vinnicombe, & Paulsson, 
2010), making such systems a particularly interesting target for evo‐
lutionary modelling. The specific choices made in developing the 
syntax and rules of this language may have shaped the results, and 
follow‐up work should aim to generalize these results across models 
and at different levels of abstraction. However, one advantage to 
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this specific approach became evident in the unexpected discovery 
that negative feedback imposes limits on the evolution of plasticity 
beyond those associated with lower variability per se. The result that 
evolution in a noisy environment can, by selecting strongly for ro‐
bustness via negative feedback, impede the later evolution of plas‐
ticity is an example of how evolvability depends on a population's 
evolutionary history. But this evolutionary downside of negative 
feedback is particularly interesting in light of recent theory show‐
ing that cells might evolve lower phenotypic variability by multiple 
mechanisms (Draghi & Whitlock, 2015). These results point to the 
value of further integrating the study of biological information‐pro‐
cessing into the debate over the evolution of plasticity.

Recent advances in measuring this variability in microbes have 
started to connect this rich history of thought in evolvability biology 
with microbiology and systems biology (Ackermann, 2015; Draghi, 
2018; Norman, Lord, Paulsson, & Losick, 2015). Bacteria produce 
polyphenisms by integrating environmental cues and internal sto‐
chasticity (Chastanet et al., 2010; Lopez, Vlamakis, & Kolter, 2009), 
providing highly tractable systems for connecting plasticity and evo‐
lution. Recently, experimental work has shown how subtle forms of 
phenotypic heterogeneity can impact evolvability in microbes (Bódi 
et al., 2017). Although recognition of some connection between ran‐
dom phenotypic variation and evolvability dates to the foundations 
of population genetics (Crow & Kimura, 1970), deeper appreciation 
of these connections and their applications particularly to microbes 
is an active and exciting area of research (Wang & Zhang 2011; 
Draghi, 2018; Mineta, Matsumoto, Osada, & Araki, 2015).

The evolution of plasticity is evident and variable in populations 
subject to anthropogenic disturbances (Crispo et al., 2010), suggest‐
ing that understanding the evolvability of plasticity is a key com‐
ponent of predicting the futures of threatened species. Plasticity 
already plays a complex role in models of evolutionary rescue, in 
which a declining population might adapt to a sustainable growth 
(Chevin, Gallet, Gomulkiewicz, Holt, & Fellous, 2013). The results in 
this paper point to another facet of this complexity: how quickly a 
novel plastic response might evolve to allow a species to maintain its 
range, exploit new niches opened up by extinctions or disturbances, 
or otherwise thrive in the face of change. Future empirical work can 
test how the interplay of internal variability and the strength of natu‐
ral selection shape a population's ability to find innovative solutions 
to rapid environmental change.
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Phenotypic variation conditions the fitness effects of new, plastic mutants in heterogeneous environments, such that greater stochastic vari‐
ability can help plasticity evolve.


