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Abstract Life history theory posits that the sequence and timing of events in an organism's 
lifespan are fine-tuned by evolution to maximize the production of viable offspring. In a virus,  
a life history strategy is largely manifested in its replication mode. Here, we develop a stochastic 
mathematical model to infer the replication mode shaping the structure and mutation distribution 
of a poliovirus population in an intact single infected cell. We measure production of RNA and 
poliovirus particles through the infection cycle, and use these data to infer the parameters of our 
model. We find that on average the viral progeny produced from each cell are approximately five 
generations removed from the infecting virus. Multiple generations within a single cell infection 
provide opportunities for significant accumulation of mutations per viral genome and for 
intracellular selection.
DOI: 10.7554/eLife.03753.001

Introduction
RNA viruses are excellent models for evolution. They replicate quickly and have extremely high muta-
tion rates, orders of magnitude greater than those of most DNA-based life forms (Drake, 1993). While 
this combination of traits creates the potential for rapid adaptation, it necessitates a life history 
strategy that balances the need for explosive, exponential growth with the requirement to maintain 
genomic integrity. The life history strategies of viruses are largely reflected by their mode of intracel-
lular replication. Two classic replication modes have been described for single-stranded RNA viruses: 
the ‘stamping machine’ mode (Stent, 1963) and the ‘geometric replication’ mode (Luria, 1951). In the 
stamping machine mode (SM), templates made from the original infecting genomes are used for the 
production of all progeny genomes. In the geometric replication mode (GR), newly made progeny 
genomes are used to create further templates for additional rounds of replication within a single cel-
lular infection cycle (Figure 1). Progeny produced from stamping machine replication are all a single 
generation away from the parental strand whereas progeny generated from geometric growth repre-
sent a distribution of generations from the parental strand, often resulting in a fractional mean number 
of generations (see Figure 1). The iterative nature of GR creates branched genealogies that allow for 
expansive exploration of sequence space and results in a mutation distribution that differs from the 
SM mode (Luria, 1951). Recent studies with population-genetic models (Draghi et al., 2010) and RNA 
enzyme populations (Hayden et al., 2011) have shown that differences in the distribution of mutants 
can significantly impact the adaptability of a population. Recent studies with poliovirus (PV) have also 
demonstrated that mutational differences within a population can have dramatic effects on pathoge-
nicity (Pfeiffer and Kirkegaard, 2005; Vignuzzi et al., 2006) as well as fitness, virulence, and robust-
ness (Lauring et al., 2012).
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Poliovirus' simple genomic architecture and medical importance have made it one of the most 
extensively studied viruses (Racaniello, 2006). However, despite decades of mechanistic studies and 
recent revelations of the importance of population structures, the replication mode and resulting 
mutation distribution have yet to be determined. PV therefore proves an excellent candidate for the 
rigorous construction of a computational model of virus replication to predict population structure and 
mutation distribution. A major feature of PV intracellular dynamics is that the genome participates in 
multiple reactions: translation, replication, and encapsidation. Its 7.5 kb genome contains a single 
open reading frame, which encodes 7 nonstructural proteins and 4 capsid proteins. Translation pro-
duces a single polyprotein, which is cleaved into individual functional viral proteins. Replication of the 
positive-sense genome by the virus-encoded RNA-dependent RNA polymerase produces a negative-
sense strand, which is used as a template for further genome synthesis. Evidence suggests that the 
initial, infecting positive-sense genomes must be translated before they can replicate (Novak and 
Kirkegaard, 1994). The switch from translation to replication appears to be dependent on the con-
centration of a viral protein product, 3CD, which stimulates a transition from a linear, translating RNA 
to a noncovalently associated ‘circular’ RNA competent for replication (Gamarnik and Andino, 1998, 
2000; Herold and Andino, 2001). Encapsidation is thought to result from protein–protein associa-
tions of capsid pentamers with the RNA replication machinery and protein–RNA association of capsid 
pentamers with viral RNA (Pfister et al., 1992; Nugent and Kirkegaard, 1995; Liu et al., 2010). Actively 
replicating genomes are preferentially encapsidated and packaging is biased to exclude negative-
sense strands, although the mechanism of this is not understood (Nugent et al., 1999). Although 

eLife digest Viruses with genetic information made up of molecules of RNA can multiply 
quickly, but not very accurately. This means that many errors, or mutations, occur when the RNA is 
copied to create new viruses. The advantage of this rapid, but mistake-filled, RNA replication 
process is that some of the mutations will be beneficial to the virus. This allows viruses to rapidly 
evolve, for example, to develop resistance against drugs.

The poliovirus is an RNA virus that can cause paralysis and death in humans. To prevent such 
infections, scientists have extensively studied the poliovirus and have developed effective vaccines 
against it that have eliminated the virus from all but a few countries. Because so much is known 
about the poliovirus and because it has a very simple structure, scientists continue to use the 
poliovirus as a model to study virus behavior.

One unknown aspect of the poliovirus' behavior is how it replicates after invading a cell. Are all 
of its RNA copies made from the original viral RNA that first infected the cell, in what is known as a 
‘stamping machine’ model? Or do the new copies of the RNA also get copied themselves in a 
‘geometric replication mode’ that increases the likelihood of mutations and enables the virus to 
evolve more rapidly?

Viral RNA molecules are copied by one of the virus's own proteins and so before the viral RNA 
can be replicated, it must first be translated to form viral proteins. When and where replication 
begins depends on the concentration of translated proteins around the RNA and so replication 
tends to begin in particular areas of the cell at different times. Schulte, Draghi et al. used 
mathematical modeling to create computer simulations of the number of polioviruses in a cell that 
take into account these time and space constraints. By including random elements in the model, the 
simulated behavior more accurately follows experimentally recorded data than previously used 
models.

The results of the model led Schulte, Draghi et al. to conclude that the poliovirus replicates by 
the ‘geometric mode’; as new copies of the poliovirus RNA are made, each copy goes on to make 
more copies. This means that in a single infected cell there are multiple generations of RNA, and 
each generation may undergo distinct mutations that are passed on to the next set of RNA copies. 
In fact, Schulte, Draghi et al. found that the average virus released from an infected cell is the 
great-great-great-granddaughter of the original virus that infected the cell. With so many different 
generations of virus coexisting in a cell, there are a lot of opportunities for new genetic 
combinations to occur and for viruses to evolve new abilities.
DOI: 10.7554/eLife.03753.002
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multiple ribosomes can translate a genome at 
the same time and multiple viral polymerases can 
replicate a genome at the same time, the pro-
cesses are mutually exclusive (Gamarnik and 
Andino, 1998). Similarly, neither translation nor 
replication can occur after a genome is packaged 
into a virion.

Several studies have demonstrated that PV 
genomes are often localized to the cytosolic sur-
faces of the endoplasmic reticulum, Golgi bodies, 
lysosomes, or vesicles derived from these (Schlegel 
et al., 1996; Bolten et al., 1998; Cui et al., 2005; 
Egger and Bienz, 2005; den Boon et al., 2010). 
Replication complexes are thought to form on 
these membranes in cis, resulting in a close asso-
ciation of translation products and positive-sense 
genomes (Novak and Kirkegaard, 1994; Egger 
et al., 2000). Compartmentalization of replication 
complexes likely accounts for the observation that 
many functions of nonstructural proteins cannot 

be complemented in trans (Novak and Kirkegaard, 1994; Ansardi et al., 1996). Only capsid proteins, 
3CD, and 3D have been demonstrated to trans-complement (Novak and Kirkegaard, 1994; Nugent 
et al., 1999; Oh et al., 2009). Taken together, these studies suggest that the essential transitions—
from translation to replication, and from replication to encapsidation—are largely localized and influ-
enced by the dynamics of the molecules in each compartment.

In recent years, modeling approaches have begun to examine the trade-offs that come with hav-
ing a genome that is a template for both replication and translation (Krakauer and Komarova, 2003; 
Regoes et al., 2005; Sardanyés et al., 2009; Thébaud et al., 2010; Martinez et al., 2011). These 
studies have raised mechanistic and evolutionary questions about the life cycle of single-stranded, 
positive-sense RNA viruses, but most have not produced models that can be directly compared to 
data. Several previous models are deterministic in nature (Krakauer and Komarova, 2003; Regoes 
et al., 2005; Martinez et al., 2011) and assume a well-mixed, spatially uniform cellular environment 
(Krakauer and Komarova, 2003; Regoes et al., 2005; Sardanyés et al., 2009; Thébaud et al., 2010; 
Martinez et al., 2011). Experimental evidence suggests that each of these assumptions is problematic 
and do not reflect the biological constraints and properties of viral replication. The small numbers of 
the critical molecules that initiate an infection suggest that a stochastic model would more accurately 
describe early reactions and could make distinct predictions from previous deterministic approaches 
(Srivastavawz et al., 2002). Often infections begin with relatively few virions that release their 
genomes into the cell and continue with the translation of these few initial genomes. Random variation 
in the switch from translation to replication is amplified by the subsequent exponential phase of the 
infection, and this amplification is likely to bias the mean dynamics of a set of infections. Indeed, recent 
single-cell studies demonstrated the significant impact of stochastic effects on poliovirus infections 
(Schulte and Andino, 2014).

Here, we have developed a stochastic simulation model in which we compartmentalize reactions 
in an effort to accurately describe intracellular dynamics in both space and time. Additionally, rather 
than fixing each parameter on an estimated value, an approach used by previous models, we use an 
Approximate Bayesian Computation approach to fit our parameters from temporal quantitative data. 
We find that by combining stochasticity and spatial structure, our model reflects and describes the 
population dynamics and structure of the viral population during an infection cycle more accurately 
than previous models.

Fitting our model to RNA abundances over time, we find that poliovirus follows the geometric rep-
lication mode: multiple iterative generations of genomic replication produce progeny virus. Posterior 
parameter fits indicate that progeny of a single cellular infection are approximately five generations 
away from the initial, infecting genomes. This replication mode produces populations with expansive, 
branched genealogies, creating the dramatic potential for the exploration of sequence space, as well 
as creating the potential for intracellular selection among related mutant genomes.

Figure 1. Illustrations of the genealogies of different 
replication modes. Red dots indicate positive-sense 
strands. Blue dots indicate negative-sense templates. 
Stamping machine (SM) progeny are one generation 
from the initial infecting genome (left). In an example  
of geometric replication (GR), progeny are an average 
of 2.33 generations from the initial infecting genome 
(right).
DOI: 10.7554/eLife.03753.003
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Results
Inference of replication parameters
We used temporal, quantitative RT-PCR data of both positive-sense genomes and negative-sense 
strands to estimate the free parameters in our model. The role of each parameter in poliovirus replica-
tion and in the mathematics of our model are diagrammed in Figure 2 and described in detail in the 
‘Materials and methods’. We chose to use measurements of positive- and negative-sense RNA at 
multiple time points for three multiplicities of infection (1, 10, and 100), as well as measurements of 
virion numbers at multiple times for MOI 10; this amounted to 27 measured means, with three data 
points for each mean. Strand-specific qRT-PCR was performed to quantify positive-sense and nega-
tive-sense poliovirus RNA against in vitro transcribed standard RNAs of each sense (Burrill et al., 
2013). Along with cell counts, this allowed for temporal measurements of the average positive-
sense and negative-sense poliovirus RNA copies per cell. Negative-sense RNA was not detectable 
until 2 hr post infection for MOIs 10 and 100 and 3 hr post infection for MOI 1. Positive-sense RNA 
was clearly quantifiable for all time points at the MOI 10 and 100 but did not rise above background 
levels until 3 hr post infection for MOI 1. Using a newly developed virion immunoprecipitation assay 
(Burrill et al., 2013), we observed de novo virion assembly between 2 hr and 3 hr post infection. 
Along with total positive-sense RNA measurements from this time course, we obtained a percentage 
of genomes encapsidated in quadruplicate at 3 hr, 4 hr, and 5 hr post infection. Figure 3 illustrates 
this data alongside projections from inferred parameters from the second round of SMC (see 
Figure 3—source data 1).

The relatively high number of data dimensions, combined with the computationally intensive and 
highly stochastic nature of our simulations, made a traditional maximum likelihood approach imprac-
tical. Instead, we turned to Approximate Bayesian Computation, using as our summary statistic the 
sum of the squared deviations of the average simulated RNA concentrations (and average fraction of 
virions for MOI 10) from their corresponding empirical means. This algorithm produces progressively 
more accurate estimates of each parameter over several rounds; Figure 4—figure supplement 1 
illustrates that, for most parameters, round one restricts the credible range of each parameter in 

Figure 2. The replication cycle of poliovirus as represented in our model. Numbered steps correspond to sections 
and equations in the ‘Materials and methods’.
DOI: 10.7554/eLife.03753.004
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comparison to the flat prior and round two leads to further focusing. The data appear to be uninform-
ative for at least one parameter, cpack; a second parameter, commax, appears to be poorly constrained 
by the comparison to MOI = 10 in round one, but somewhat constrained by the broader measurement 
against all three MOIs in round two. Round two also appears to significantly move the mode of two 
other parameters, ccom and c3A.

Figure 4—figure supplement 1 indicates that ABC inference informed the values of nine of our ten 
parameters, but these marginal parameter distributions alone do not capture correlations between 
parameter values. Figure 4—figure supplement 2 shows evidence of significant correlations, and 

Figure 3. Projected mean abundances of positive-sense RNA (solid line simulations vs filled circle experimental measurements), negative-sense RNA 
(dashed line simulations vs hollow circle experimental measurements) and virions (orange dotted line simulations vs star experimental measurements; 
measured only for MOI = 10). Each row represents a different example parameter set (see ‘Results’); each line is the mean of 20 individual cell simula-
tions, and the means of five sets of 20 replicate simulations are plotted in each panel. Parameter values are given in Figure 3—source data 1.
DOI: 10.7554/eLife.03753.005
The following source data and figure supplement are available for figure 3:

Source data 1. ‘Best’ parameter set used in Figure 3—figure supplement 1, and Figure 4—figure supplement 4. 
DOI: 10.7554/eLife.03753.006
Figure supplement 1. Distribution of virions in 10,000 replicates for simulations with (points) and without (line) a deterministic threshold for waiting 
times (see ‘Materials and methods’). 
DOI: 10.7554/eLife.03753.007
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Figure 4—figure supplement 3 shows that parameter sets drawn from the marginal distributions in 
Figure 4—figure supplement 1 (i.e., uncorrelated parameter values) do a poor job of matching the 
data. While not unexpected, these significant correlations require that we work directly with the sam-
pled parameter sets arising from our inference process, which is the approach we take below.

Each parameter in the posterior is supported over a significant range of possibilities. This remaining 
uncertainty reflects two factors: the data may be insufficient to determine each parameter, and the 
inference process may not have fully exploited the inferential power of the data. We took several 
approaches to quantify the sufficiency of the data and the effectiveness of the inference process. First, 
we measured the mean error of parameter sets when compared to the data for each multiplicity of 
infection independently; we asked if performance at one MOI predicted performance at the other 
two. If so, the dimensionality of our data would be effectively lower than we had initially assumed. 
Surprisingly, pairwise correlations between mean error at one MOI and another were very weak: 
Spearman's rho is 0.031 for MOIs 1 and 10, −0.092 for MOIs 1 and 100, and 0.129 for MOIs 10 and 
100. This suggests that measurements at each MOI are contributing distinct information to our infer-
ence process.

Second, we determined the sensitivity of our measure of model ‘fit’ to variation in each of the 
parameters. This analysis, described in detail in the ‘Materials and methods’, showed that the data 
significantly informed the values of eight of ten of the parameters (Figure 4—figure supplement 4). 
We also performed a separate validation analysis which attempted to infer the replication pheno-
type, g , from mock data simulated from parameter sets drawn from our prior distribution. As 
described more fully in the ‘Materials and methods’, this exercise confirms that the data and method 
are adequate to infer the trait of interest, albeit with some degree of inaccuracy (Figure 4—figure 
supplement 5).

Finally, we examine the fit between the data and the mean dynamics of inferred parameter sets. 
Figure 3 shows that the inferred parameter sets generally capture the information in the RNA and 
virion data, although some parameter sets deviate consistently from the data for some values. 
Variability among replicate sets of twenty single-cell simulations is substantial, correlated across a 
time series, and greatest for the smallest MOI. Further inferential effort could improve either the 
accuracy of the mean predicted dynamics or the precision of replicate simulation dynamics, though 
Figure 3 suggests that such improvements could only be modest. This variability is expected due to 
the stochastic nature of the simulations, and it may better reflect the biological noise of the infection 
(Schulte and Andino, 2014).

Predicted replication dynamics
Figure 4 shows the inferred posterior distribution of g , the mean number of generations for a pack-
aged virion based on two rounds of inference with measured RNA and virion abundances. This distri-
bution is plotted for MOI = 10; the predicted values at MOI = 1 and MOI = 100 are very similar and 
highly correlated (weighted means: MOI = 1, 4.96; MOI = 10, 5.06; MOI = 100, 4.85; Spearman's rho 
(unweighted): MOI 1 and 10, 0.92; MOI 1 and 100, 0.85; MOI 10 and 100, 0.96). While this distribution 
does show substantial variance, it is strongly inconsistent with a ‘stamping machine’ mode of replica-
tion, which would have a g  near one.

To explore the robustness of this inference, we compared the predicted dynamics of the model to 
an additional type of data: the fraction of positive-sense RNA molecules translating at each time 
point. We fractionated infected cell lysates and quantified positive-sense RNAs in monosome and 
polysome fractions relative to total positive-sense RNA copies. These data render a percentage of 
genomes associated with translation machinery and provide an additional set of data to evaluate the 
parameter sets produced by SMC. When measured at an MOI of 10 at 1, 2, 3, 4, and 5 hr post infec-
tion, the majority of positive-sense RNAs appeared to be associating with translation machinery, con-
sistently averaging near 85%. Many of the inferred parameter sets are consistent with the measured 
values but a substantial fraction is clearly inconsistent (Figure 4—figure supplement 6). The summed 
squared error of the translating fractions is also correlated with g  (Figure 4—figure supplement 7). 
To estimate how these new data inform our prediction of g , we calculated a weighting factor based 
on the relative rank of the summed squared error of translating fractions, such that the parameter set 
with the best fit was assigned a weight of 1, the next a weight of 1134/1135, etc. Reweighting the 
distribution of g  by this additional factor produced the distribution shown in Figure 4; the mean g  
shifts from 5.06 to 4.78.

http://dx.doi.org/10.7554/eLife.03753
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Predicting the distribution of mutations
We simulated mutation and selection during infections to understand how replication dynamics shape 
the distribution of mutation frequencies among virions. To illustrate how mutant frequencies depended 
on g , we chose two parameter sets with values of g  at the low and high end of the range supported 
by the posteriors in Figure 4 and included the ‘best’ parameter set as a representative of the more 
common values of g . Mutation frequencies for these parameter sets (‘best’, ‘low’, and ‘high’—see 
Figure 3—source data 1) are plotted in Figure 5A for a range of mutants that have a diminished rate 
of replication relative to the wild type. We chose to model this particular type of deficiency because 
we expected that replication deficits would directly affect the growth and packaging of the mutants. 
We observed that deficits in a different trait, the rate of complex formation, were effectively invisible 
to intracellular selection (the frequency of a mutation with an 80% reduction in complex formation was 
estimated to be reduced by 0.6–4.6% compared to a neutral mutation in the ‘best’ parameter set); we 

Figure 4. Left: posterior distribution of the mean number of generations of replication (g ). Right: distribution 
reweighted by the fit of predicted fractions of translating positive-sense RNA to empirical measurements.
DOI: 10.7554/eLife.03753.008
The following figure supplements are available for figure 4:

Figure supplement 1. Prior and posterior distributions after each of two rounds of inference by Approximate 
Bayesian Computation. 
DOI: 10.7554/eLife.03753.009

Figure supplement 2. Correlations between parameters in the round two posterior. 
DOI: 10.7554/eLife.03753.010

Figure supplement 3. Log of total error for inferred, weighted parameter sets in round two (solid) vs 1000 sets 
assembled from parameter values drawn independently from the weighted posterior (dotted). 
DOI: 10.7554/eLife.03753.011

Figure supplement 4. Goodness-of-fit (1/[1 + mean error]) of highly replicated simulations for MOI = 10 and the 
‘best’ inferred parameter set. 
DOI: 10.7554/eLife.03753.012

Figure supplement 5. Inference results from three validation experiments. 
DOI: 10.7554/eLife.03753.013

Figure supplement 6. Histograms of the projected fraction of positive-sense RNA undergoing translation for the 
mean simulated dynamics of each parameter set, compared to empirical measurements (orange dots). 
DOI: 10.7554/eLife.03753.014

Figure supplement 7. Summed squared error (SSE) of fraction of translating positive-sense RNA for all  
1135 parameter sets, plotted against g  at MOI = 10. 
DOI: 10.7554/eLife.03753.015
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http://dx.doi.org/10.7554/eLife.03753.012
http://dx.doi.org/10.7554/eLife.03753.013
http://dx.doi.org/10.7554/eLife.03753.014
http://dx.doi.org/10.7554/eLife.03753.015


Genomics and evolutionary biology | Microbiology and infectious disease

Schulte et al. eLife 2015;4:e03753. DOI: 10.7554/eLife.03753 8 of 18

Research article

expect that mutations in traits like the rate of translation would also be complemented by the wild-
type phenotype and so would not experience significant selection during the infection in which they 
arose.

Several distinct features of mutation in this model are evident from Figure 5A. Mutation fre-
quency does not decrease linearly as intracellular selection approaches its maximal value; the 
curve results from the fact that mutant genomes that are immediately packaged are not subject  
to selection, while the contribution of rare, early mutants to average mutation frequency may  
be reduced by multiple rounds of intracellular selection. Knowing g  and the mutation rate  
allows us to directly calculate the fate of neutral or very unfit mutations, but estimating the fre-
quency of mutations of intermediate fitness requires additional simulations using our model.  
A third feature is the sizable confidence intervals relative to the number of infections sampled  
(10 million for each point). This high variability reflects the large contribution of very rare muta-
tions that arise early in an infection and can contribute 1000s of mutant virions, especially when 
selection is weak.

The effect of these rare, early mutations in the overall mutant distribution can be seen as a depar-
ture from a Poisson process. To remove a potential confounding variation in burst size, we compare 
the distribution of mutations from infections within 10% of the median burst size and calculate a 
Poisson expectation for a median-sized burst with the same expected frequency. For the ‘best’ param-
eter set, median infections produced many more bursts with no copies of a given mutation (79.4% vs 
22.5% for the Poisson), but also many more bursts with five or more copies of the mutant (8% vs 1.82% 
for the Poisson; n = 51,365).

The distribution of the number of generations between progeny virions and initial infecting 
genomes is displayed for three parameter sets (‘best’, ‘low’, and ‘high’—see Figure 3—source data 1) 
in Figure 5B. Only a very small percentage of progeny are produced via a single genomic replication 
cycle. Although all three parameter sets have means close to five generations, the distributions show 
a portion of the progeny virions representing up to 10 generations between the infecting genotypes 
and packaged virions within a single cellular infection.

Figure 5. Left: mean mutation frequencies for three parameter sets (‘low’, g = 3.94; ‘best’, g = 4.65; ‘high’,  
g = 5.76). Mutation rate is 2 × 10−5 per replication event; ‘relative replication rate’ reflects the reduced probability 
of a mutant template to replicate, relative to an unmutated strand. Grey lines indicate the expected mean for each 
parameter set with no selection (deficit of zero); the black line shows the mutation rate in one replication step, and 
therefore the expected frequency when mutants cannot replicate. Bars indicate 95% confidence intervals. Right: 
distributions of g of progeny from single cell infections for three parameter sets (‘low’, g = 3.94; ‘best’, g = 4.65; 
‘high’, g = 5.76).
DOI: 10.7554/eLife.03753.016
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Discussion
The intracellular replication mode of a virus strongly influences the frequency and distribution of muta-
tions among progeny, which shape the long-term behavior of an infecting population (Vignuzzi et al., 
2006; Lauring et al., 2012). Due to the complex nature of intracellular dynamics, assessing the mode 
of replication of viruses is a difficult task (but see Chao et al., 2002). Here, we built on decades of 
mechanistic studies and recent modeling efforts to construct a stochastic computational model cou-
pled with new Bayesian inference methods. We combined these mathematical and computational 
techniques with accurate temporal data to produce a detailed picture of viral infection. We found that 
positive- and negative-sense RNA measurements made across multiple MOIs, along with quantitative 
data on virion packaging, are sufficient to infer that poliovirus replication occurs in several layers of 
intermediate replication, in contrast to the oft-assumed ‘stamping machine’ model. The implications 
of the inferred geometric replication mode are as follows: (1) error rates per-replication are consider-
ably lower than measured rates from full-replication-cycle in vivo studies, (2) for a given viral poly-
merase error rate, mutation will progressively accumulate in both genome and anti-genome RNAs, 
which should result in a more accentuated departure from the master sequence, allowing a better 
exploration of the available sequence space during a single infection cycle, and (3) there exists a sig-
nificant potential for intracellular selection and competition among related genomes, even in infec-
tions initiated by only a single genome.

Accurate estimates of viral mutation rates are essential for studying viral evolution and have crucial 
practical applications in drug and vaccine design. While estimates of mutation rates exist for nearly 
two dozen viruses, estimates of replication modes exist for only a few (Sanjuan et al., 2010). Calculating 
per-replication event mutation rates from observed mutant frequencies is not possible, or even mean-
ingful, without knowledge of the replication mode. Thus, estimates of poliovirus per-replication 
event mutation rates can vary over 10-fold depending on the assumed replication mode (Drake, 
1993; Sanjuan et al., 2010). By inferring the mode of replication, we have been able to link esti-
mates of per-replication event mutation rates to published mutant frequencies. The most extensive 
poliovirus mutant frequency data set estimated an average mutant frequency of 2 × 10−4 (Acevedo 
et al., 2014). Using our inferred value of approximately five intracellular generations, we calculate a 
per-replication event mutation rate of 2 × 10−4/5 × 2 = 2 × 10−5, which is in agreement with the average 
estimates of poliovirus mutation rates calculated in vivo from lethal mutation frequencies (Acevedo 
et al., 2014). Rates of specific types of mutations, such as transversions and transitions, could each 
be inferred from their mutation frequencies by the same approach. Our inference of five intracel-
lular generations is also in line with previous inferences of replication mode using the Luria-Delbruck 
fluctuation test null-class method (Sanjuan et al., 2010). However, our results highlight some limita-
tions for inferring mutation rates from frequencies: intracellular selection may strongly affect muta-
tion frequencies, and the strong stochastic nature of virus replication appears to deeply modulate 
minor allele distribution, which in turn will result in imprecise estimates of the expected frequency. 
In particular, assuming that mutation frequency can be modeled as a Poisson process will lead to 
inappropriate confidence in measured frequencies. As a consequence, multiple empirical mutation 
frequencies measurements will be required to obtain a more precise determination of true mutation 
frequencies.

The branched genealogy inferred in our study implies the potential for significant amounts of intra-
cellular complementation, selection, and competition between mutant genomes, even in infections 
initiated by a single genome (Novak and Kirkegaard, 1994; Turner and Chao, 1999; Vignuzzi et al., 
2006). Figure 5A demonstrates the extent to which the frequency of a mutation can be skewed by 
negative selection during the course of an infection. On the other hand, a mutational event that 
occurred early in replication and conveyed an intracellular replication advantage could potentially give 
rise to hundreds or thousands of descendant virions in a single generation. If the mutation distribution 
data in Figure 5B were displayed as a tree (as in Figure 1), it would contain over 7000 terminal nodes, 
too many to resolve in a figure. Hence, the apparent potential for mutant interactions is vast. These 
results suggest that the evolutionary fate of mutations may depend strongly on their intracellular com-
petitive ability, even when multiplicities of infection are low. Additionally, studies that rely on bottle-
necks to reduce selection in viral mutation studies (e.g., de la Peña et al., 2000) may be allowing more 
selection than anticipated. Future population dynamics studies should consider the implications of the 
intracellular expansion of mutant phenotypes.
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Virus infections are normally depicted as deterministic processes that follow a stereotypical path 
from infection to progeny production and death of the infected cell. However, experimental data show 
that some infected cells produce few progeny while others produce large populations of progeny 
(Schulte and Andino, 2014). These observations support the notion that stochasticity is an important 
factor shaping the outcome of infection. By combining accurate experimental measurements with a 
stochastic model of viral replication, we have obtained a realistic description of how the molecular 
events driving the life cycle of the virus govern the outcome of infection in each cell.

A significant benefit of computational modeling is that the information learned in the empirical 
process of the development of a model can yield important insights in the biologic processes under 
study. For example, our initial attempts to fit temporal strand measurement data were unable to match 
the sharp transition to exponential growth seen in the data. Only after removing the requirement for 
positive-sense genomes to be translated before becoming replication-competent was our model 
flexible enough to rapidly create templates for exponential replication. While Novak and Kirkegaard 
(1994) demonstrate a requirement of the initial, infecting genomes to be translated before replication 
can occur, their data did not implicate that all genomes produced at any time during infection must 
be translated before replicating. Our study suggests that newly synthesized positive-sense genomes 
may or may not disperse to nucleate new replication complexes within a single cellular infection, allow-
ing us to model intracellular dynamics in a novel way by permitting a portion of newly made positive-
sense strands to immediately act as templates for replication without the requirement of translation.

Our model succeeds in describing many experimentally observed features of viral replication and is 
an excellent staging point for future and more accurate models of viral replication and evolution. With 
the realistic benefits of stochasticity, compartmentalized reactions, and parameters inferred from 
quantitative, temporal data, it acts as a baseline intracellular viral replication algorithm. More quanti-
tative data, including data on the formation and number of replication compartments, would further 
inform the model. Potential additions of intracellular selection, complementation, and recombina-
tion parameters would allow population evolution studies to explore intracellular dynamics with more 
precision than previous approaches. The ultimate goal is to generate a comprehensive model incorpo-
rating mechanistic replication dynamics learned from virology with selection and complementation 
dynamics learned from population genetics. This tool could be very powerful for informing future 
therapeutic and preventative strategies.

Materials and methods
Experimental procedures
Cells and viruses
HeLaS3 cells (ATCC CCL-2.2) were maintained in 50% DMEM/50% F-12 medium supplemented 
with 10% newborn calf serum, 100 U/ml penicillin, 100 U/ml streptomycin, and 2 mM glutamine 
(Invitrogen). Poliovirus Mahoney type I genomic RNA was generated from in vitro transcription  
of prib(+)XpAlong. To generate virus, 20 µg of RNA was electroporated into 4 × 106 HeLaS3 cells in 
a 4-mm cuvette with the following pulse: 300 V, 24 Ω, 1000 µF. The resulting virus was passaged at 
high multiplicity of infection (MOI ∼1–10) three times then subjected to ultracentrifugation through a 
30% sucrose cushion.

Infections
Four wells of HeLaS3 cells in 12-well plates were washed, trypsinized, and counted twice each on a 
hemocytometer then averaged to determine cell count. To synchronize infections, plates were placed 
on ice, cells were washed with cold serum-free media and infected at MOIs 1, 10, and 100. Plates were 
incubated at 4°C for 30 min with rocking every 10 min to adhere virus. After removal of the inoculum, 
cells were washed 2× with warm serum-free media. Cells were then incubated at 37°C in 2% serum 
media until harvest. To harvest, plates were frozen at −70°C.

RNA extraction, reverse transcription (RT), and qPCR
Plates were thawed on ice and refrozen at −70°C 3×. RNA was extracted via the PureLink RNA 
Micro Kit (Life Technologies) according to the manufacturer's instructions. cDNA was synthesized from 
total RNA using SuperScript III Reverse Transcriptase (Life Technologies) and 125 nM strand-specific 
RT primer (+strand_RT: 5′-GGCCGTCATGGTGGCGAATAATGTGATGGATCCGGGGGTAGCG-3′; 
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-strand_RT: 5′-GGCCGTCATGGTGGCGAATAACATGGCAGCCCCGGAACAGG-3′) in a 5-µl reaction. 
Separate RT reactions for positive and negative-strand RNAs were performed for each sample.  
RT products were treated with 0.5 units of Exonuclease I (Fermentas) to remove excess RT primer 
prior to qPCR. Strand-specific qPCR was based on a published protocol (Burrill et al., 2013). cDNAs 
were analyzed by qPCR using 2× SYBR FAST Master Mix (Kapa Biosystems), 200 nM strand- 
specific qPCR primer (+strand_For: 5′-CATGGCAGCCCCGGAACAGG-3′; -strand_Rev: 5′-TGTGAT 
GGATCCGGGGGTAGCG-3′), and 200 nM Tag primer (5′-GGCCGTCATGGTGGCGAATAA-3′) in a 
10-µl reaction. A 10× dilution series of in vitro transcribed positive- and negative-strand RNA stand-
ards was run alongside experimental samples and used to construct a standard curve.

Virion immunoprecipitation
Lysates from MOI 10 infections were homogenized with a final concentration of 0.06% NP-40. 
Immunoprecipitation was performed using Protein A-coated Dynabeads and anti-poliovirus antibody 
according to a published protocol (Burrill et al., 2013).

Sucrose gradients
HeLaS3 cells were infected for 1, 2, 3, 4, and 5 hr at an MOI of 10 in 15-cm dishes then simultane-
ously treated with 100 µg/ml cycloheximide (CHX) for 2 min at 37°C. Cells were washed with 
PBS+CHX and lysed with 0.5% NP-40 lysis buffer containing CHX on ice for 20 min. Cell debris was 
pelleted in a table-top centrifuge at 2000 rpm for 10 min at 4°C, then nuclei were pelleted at  
9000 rpm for 10 min at 4°C. Cell lysates were loaded on a 10–50% sucrose gradient containing CHX 
and ultracentrifuged at 35,000 rpm for 3 hr. Fractions were collected on a Biocomp Gradient Station 
with a BioRad Econo UV Monitor. Fractions were pooled based on the spectrophotographic trace 
into two fractions (ribonucleoprotein and monosome/polysome fractions), RNA was extracted and 
subjected to qRT-PCR.

Modeling replication
Outline of stochastic simulation
We developed a stochastic simulation model that tracks discrete abundances of poliovirus molecular 
species within a cell and simulates individual reactions. This model is based on the Gillespie algorithm 
(Gillespie, 1976). In this model, stochastic events, such as the production, decay, or transformation of 
molecular species, are represented by reaction rates. Each rate can depend on x, the vector of abun-
dances of all species in the system. Given an initial state x0 at t = 0, the algorithm proceeds for a set 
duration (tmax) as follows:
 

a. Sum the rates of all reactions 1..n in the system; 
=1

= ( ).
n

total ii
r r∑ x

b. Draw the time until the next event, Δt, from an exponential distribution with a mean of rtotal.
c. Advance to time t + Δt.
d. Choose which event occurred by drawing from a multinomial with probabilities ri(x)/rtotal.
e. Change x to reflect the chosen event.
f. If t < tmax, return to step (a).

 
Similar to Hensel et al. (2009), we have modified the basic Gillespie algorithm to balance accuracy 

and speed. When the rtotal is below a threshold (1000 events/min), we draw exponential times as 
described above; when it is above this threshold, we use the inverse of the rate—the expected time—
as our interval between reactions. Figure 3—figure supplemental 1 shows that this approximation 
delivers accurate results for the best (lowest error) inferred parameter set. This procedure allows us to 
efficiently generate stochastic realizations of replication, translation, and other reactions unfolding in 
a single infected cell, based on a system of equations that describes each essential reaction in the 
poliovirus life cycle. Results from many replicate simulations are then averaged to predict the dynamics 
across a population of infected cells.

Figure 2 depicts the events in poliovirus replications captured quantitatively by our model, each of 
which is described in detail below.

Binding (step 1)
We assume that the number of virions that bind to, and subsequently infect, a cell is Poisson distrib-
uted with a mean equal to the multiplicity of infection (MOI). This formulation assumes that bound 
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virions do not interfere with the binding of additional virions during the period of infection. We denote 
these coated positive-sense RNA genomes at RNA+

initial; their distribution is therefore:

( )+

 ~ .
initial

RNA Poisson MOI  (1)

Uncoating (step 2)
A quantitative description of uncoating was derived from the data presented in Brandenberg et al. 
(2007); based on these data, we choose the two-parameter gamma distribution to model stochasticity 
in this process. To account for differences in experimental protocols, we excluded the t = 0 measure-
ment from Brandenberg et al.'s data and, taking the t = 8 min measurement as the starting point, 
fit the gamma distribution to the average cumulative measurements. Using the optim() function in 
R, we obtained an estimate of 0.678 for the shape parameter, and 0.02 for the rate parameter (n = 28, 
R2 ≈ 0.92). Each of the RNA+

initial molecules transitions to a translationally competent, linear-form posi-
tive-sense RNA, RNA+

lin, after a waiting time, tuncoat, drawn from Equation 2.

uncoat  ~ (0.02, 0.678).t Gamma  (2)

Translation (step 3)
Translation is the first role of positive-sense genomes in a cell, and it continues as the primary role 
throughout the infection. Because poliovirus translates a single polyprotein, we assume that all protein 
products are produced at equal rates based upon a single rate-constant of initiation. We also assume 
that poliovirus genomes, and not cellular factors, are rate-limiting, and neglect the delay between 
the initiation of translation and the appearance of the protein products. With these assumptions, 
translation can be modeled as a first-order equation with a single parameter, ctrans, yielding a rate of 
translation:

+

= .
trans trans lin

r c RNA     
(3)

Here, and throughout the model, we consider these rates to describe Poisson processes, rather 
than changes in continuously valued quantities. Square brackets are used to indicate the concentration 
per cell, or abundance, of each molecular species. We track three protein products of translation: the 
procapsid units, which we abbreviate CAP, and protein products 3A and 3CD. Based on evidence from 
complementation experiments, we assume that CAP units and 3A diffuse freely, while 3CD accumu-
lates within complexes with translating genomes (Novak and Kirkegaard, 1994; Ansardi et al., 1996; 
Nugent et al., 1999). Equation 3 applies to translation of both complex-associated and free genomes. 
Global abundances of CAP and 3A are tracked, while abundances of 3CD are tracked individually for 
each replication complex. 3CD arising from the translation of free genomes is ignored.

Replication complex formation (step 4)
We assume that two events must happen before a translating positive-sense strand can replicate: 
it must attach to a membrane, representing nucleation of a replication complex, and it must circu-
larize through association with 3CD (Gamarnik and Andino, 1998; Herold and Andino, 2001). Once 
a strand associates with a membrane, we consider that it has formed a complex, and assume that all 
subsequent translation events will add to the local concentration of 3CD. We model this first step by 
introducing a rate, rcompart, at which the RNA+

lin species forms complexes. We also assume that the viral 
protein product 3A facilitates this complex formation (Hsu et al., 2010). Finally, we assume that com-
plex formation is limited by the supply for suitable membrane, which limits the number of possible 
complexes in a cell to commax (Guinea and Carrasco, 1990). We therefore introduce a first-order reac-
tion scaled by the number of existing complexes, com, the maximum, commax, and the concentration 
of the protein 3A:

[ ][ ]
= 1– 3 .

com com

max

com
r c A

com

       
(4)

While other viral and cellular proteins are involved in complex formation, we assume that their 
influence is adequately represented by tracking the concentration of 3A. We also represent the 
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consumption of some number of 3A molecules in the formation of each complex by a parameter c3A. 
If insufficient 3A is available upon complex formation, newly translated proteins are consumed by the 
existing complex until c3A have been allocated. Therefore, we are assuming that 3A binding is cooper-
ative, and that incomplete complexes have much higher affinity for 3A than does the reaction to form 
a new complex.

Circularization (step 5)
We model circularization—the transition of a positive-sense genome from a linear, translating mole-
cule to a noncovalently associated circularized molecule competent for replication—as a first-order 
reaction driven by the concentration of the viral protein 3CD in each complex (indexed by i).

[ ]3 .=
i

circ circ i
r c CD  (5)

This formulation reflects experimental data supporting the direct role of 3CD in circularization 
(Gamarnik and Andino, 1998; Herold and Andino, 2001), and the low rate of rescue of 3CD-deficient 
strains by complementation in trans (Novak and Kirkegaard, 1994).

Replication (step 6)
We distinguish replication rates for positive and negative strand synthesis with separate rate constants 
crep+ and crep−. We ignore polymerase concentrations and instead assume that both types of replication 
are first-order reactions modified by a common cellular resource limit. This limitation is parameterized 
by repmax, the maximum number of replication events per cell permitted by some limited resource and 
implemented with a running counter, rep, of synthesized RNAs. We also assume that per-capita repli-
cation does not differ between replication complexes, allowing us to write a mass-action equation for 
both replication reactions.

+

+ +
= 1– .rep rep circ

max

rep
r c RNA

rep

           
(6a)

–

– –
= 1– .rep rep circ

max

rep
r c RNA

rep

           
(6b)

Note that rrep+ measures the rate at which replication is initiated on positive-sense templates, produc-
ing negative-sense strands, and similarly, rrep− measures the rate of positive-strand production.

We allowed newly synthesized positive-sense genomes one of three fates: (1) associate with capsid 
protomers and become encapsidated, (2) diffuse into the cytoplasm where they can translate and 
potentially create new, independent compartments, or (3) remain in the complex in which they were 
generated and act as templates for further RNA replication. We assume that positive-sense genomes 
that remain in the complex are immediately competent for replication. We were unable to fit the sharp 
transition to exponential growth seen in our strand measurement data without allowing for this third 
option. Allowing newly synthesized positive-sense genomes to remain in the complex and act imme-
diately as replication templates is consistent with previous reports indicating a coupling between 
translation and replication as we still require initial, infecting genomes to be translated before transi-
tioning to replication (Novak and Kirkegaard, 1994). Negative-sense strands also stay in the complex 
in which they were produced and are immediately competent for replication.

We assume that only the positive-sense replication-competent form is packaged (Ansardi et al., 
1996, but see; Liu et al., 2010), and that, following Nugent et al. (1999), genomes can only be pack-
aged as they are synthesized from a negative-sense strand. We therefore first determine whether the 
newly synthesized positive-sense strand is packaged; then, for unpackaged genomes, we calculate 
whether they remain in the replication complex.

Packaging (step 7)
We assume that the rate of initiation of packaging is proportional to the global concentration of a 
virus-derived protein product, CAP, representing capsid protomers. These protomers form pentamers, 
of which 12 are required for each capsid; each packaging event therefore consumes 60 units of CAP. 
To account for the evidence that deficiencies in capsid proteins can be complemented in trans, we 
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allowed capsid proteins to diffuse freely throughout the cell. As with 3A molecules and complex for-
mation, if a packaging event begins when the global abundance of CAP is less than 60, then further 
packaging is halted until this deficit is filled.

Using the approximation that each available CAP molecule independently contributes to the prob-
ability of packaging, we derive the probability that a newly synthesized positive-sense strand is pack-
aged to be:

[ ]–

=1– .
packc CAP

packp e  (7)

Positive strand dispersal (step 8)
The probability of a newly synthesized positive-sense strand to remain within its replication complex, 
assuming it was not packaged, is given by the parameter cstay. The total probability is therefore:

( )= 1– .stay stay packp c p
 

(8)

Replication phenotype
Our primary goal is to infer the number of replication cycles between the infecting and the progeny 
virions. Defining a complete replication cycle to include both copying to a negative-sense strand, then 
back to a positive-sense strand, we label the mean of this value g . The principal purpose of this mean 
is to link the mutation rate of replication to the mean mutation frequency in the progeny population, 
so the appropriate measure is to average over virions, not infected cells. For k replicate simulations, 
let ni represent the number of progeny produced by each replicate i, and gij represent the number of 
replication cycles in the ancestry of each virion j in replicate i; then we calculate g  as follows.

=1 =1

=1

= .

ik n

iji j

k

ii

g
g

n

∑ ∑
∑  

(9)

Parameter inference
Inference method
We chose to implement a version of Approximate Bayesian computation called Sequential Monte 
Carlo (Sisson et al., 2007; Toni et al., 2009; Beaumont, 2010; Csilléry et al., 2010; Lopes and 
Beaumont, 2010; Toni and Stumpf, 2010). This method consists of several rounds of parameter 
selection which form successively better approximations of the posterior distribution. In each round x, 
a population of size nx parameters sets is generated iteratively by choosing a parameter set from the 
preceding round x − 1, perturbing its values, then accepting or discarding the new parameter set 
based on the distance of its measured summary statistic from the summary statistic representing the 
data. Parameter sets with distances less than εx are accepted; a diminishing series of thresholds, 
ε1 > ε2 > ε3, etc, progressively focuses the search on those parameter values that best match the data. 
In round 1, parameter sets are drawn from the prior distributions; this first round is therefore identical 
to the basic rejection algorithm, but with a fairly large ε1 to reduce computation time.

The advantage of searching for better parameter sets near previously identified good values is 
a much higher frequency of acceptance, and therefore much less computational time. However, the 
parameters accepted in later rounds are then biased toward common values in the previous rounds. 
The SMC algorithm removes this bias by weighting the selection of parameter sets against those that 
are most similar to their parent round, and toward those that resemble the prior distribution. Let Kσ(θa, θb) 
represent the probability of perturbing θa into θb with a Gaussian kernel of standard deviation σ, wxi 
represent the weight of parameter set i in round x, θxij represent the value of parameter j in set i of 
round x, and π(θ) represent the prior probability of θ. Then, for round two and later, we calculate these 
importance weights as in Equation 10 (adapted from Toni et al., 2009).

–1

–1,
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, ,=1
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( )
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Beaumont (2010) suggests that the Gaussian perturbations applied to each proposed parameter 
set should be scaled with regard to the variance in that parameter in the previous round. In practice, 
we identified a trade-off based on the scaling of these perturbations; smaller perturbations lead to 
increased acceptance rates but more positively skewed importance weights; because the weighting 
of each accepted parameter set is normalized relative to the highest observed importance weight, 
this strong skew effectively dilutes the inferential power of the analysis. We found that using the stand-
ard deviation of each parameter as the standard deviation for the perturbation balanced this trade-
off adequately for our model: the weights of the 1135 sampled parameter sets had an entropy of 
10.01 bits, compared to a maximal value of 10.15 bits. This high entropy confirms that any remaining 
skew in the importance weights does not severely diminish the effective sample size.

Implementing this method requires several additional choices: the shapes of prior distributions, the 
number of rounds, the values of ε, and the number of replicates, n, to perform for each evaluation of 
the model. This last decision turned out to be crucial; inferring based on the mean of a larger number 
of replicates (n ≥ 1000) tended to select parameter sets with highly variable behavior. Reducing n led 
to a higher rate of parameter set rejection but more biologically plausible dynamics. A simple expla-
nation for this pattern is that a number of parameter sets produce acceptable mean behavior, but 
differ in the degree of stochastic variation around that mean in a way that does not reflect measured 
stochastic variation (Schulte and Andino, 2014). We therefore chose to accept parameter sets that 
passed a given ε for multiple, sequential sets of n replicates. For round 1, one thousand parameters 
sets were accepted based on five sets of n = 20 replicates at MOI = 10 only with ε = 12. For round 2, 
1135 parameters sets were accepted based on five sets of n = 20 replicates at MOI = 1 with ε = 16, 
five sets of n = 20 replicates at MOI = 10 with ε = 12, and five sets of n = 20 replicates at MOI = 100 
with ε = 7. Thresholds for round 2 were calibrated to achieve an acceptance rate of about 1 in 10,000.

Approximate Bayesian computation uses summary statistics to judge the fit of model predictions to 
data. We chose to compute the sum squared error of the log of the mean abundances of positive- and 
negative-sense RNA, and the log ratio of positive-sense RNA in capsids to the total positive pool. This 
produced a single summary statistic that captured the total error of the predictions from a particular 
parameter set. Using the natural logs for each data point effectively weights each deviation by its rel-
ative magnitude, which prevents the large absolute size of errors at later time steps from dominating 
the error measurement.

To aid in visual exploration of the data, we chose five representative parameter sets as follows. 
From an initial batch of 513 parameter sets, we chose the 50 sets with the overall lowest error. From 
these, we sampled sets of five at random and calculated the summed pairwise distance in parameter 
space of those five sets from each other. To adjust for the different scales and uncertainties in each 
parameter, the contribution of each parameter to the distance measure was divided by its standard 
deviation over the whole set of 513 values. These summed distances provided a metric of the param-
eter diversity captured in a choice of five parameter sets; we examined one thousand randomly drawn 
sets of five and chose the set with the highest summed distance. These five parameter sets are shown 
in Figure 3—source data 1.

Method validation
To test the effectiveness of the inference process and the adequacy of our data, we chose parameter 
sets from the prior, produced simulated data from these parameter sets, and then performed the 
sequential Monte Carlo method described above. We chose three sets of parameters based on two 
criteria: representation of a high diversity of the replication phenotype, g , and biological plausibility. 
We achieved these criteria by sampling the prior, measuring g  and the mean number of virions at 
MOI = 10, and choosing three parameter sets than spanned the range of g  and produced a number 
of virions similar to the empirically measured value.

For each parameter set, we measured RNA abundances and, for MOI = 10, virion abundances with 
10,000 replicate simulations. These data were then treated exactly as the empirical data were handled; 
the log of the averages was used to measure error in the Bayesian inference procedure described 
above. At least one thousand accepted parameter sets were collected for both inference rounds 
(except in one case in which fast convergence and lengthy computation times made round two unnec-
essary and computationally costly).

The mean RNA abundances for MOI = 10 and the inference results are plotted in Figure 4—figure 
supplement 5. In each case, the inference process produced a narrow posterior, relative to the prior, 
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with clear similarity to the actual value of g  for each starting parameter set. However, the mean of the 
final posterior fails to perfectly match the true value in all three cases. Also, the second round of infer-
ence, which more than doubles the amount of data used to assess goodness-of-fit, achieved little in 
these validation experiments. The error thresholds (values of ε) used here may have been too permis-
sive to achieve complete convergence to the correct value. Nonetheless, these experiments show that 
our statistical method, when combined with the types and quantities of data we have available, can 
produce a reliable inference.

Sensitivity analysis
To further investigate if the parameter values identified by ABC minimize the error in predicted RNA 
and virion dynamics, we explored the sensitivity of mean error to variation in each parameter for a 
single parameter set (‘Best’ in Figure 3—source data 1). As before, error was assessed by comparing 
the log of the mean RNA and virion abundances to empirical data for sets of 20 simulations. 500 trials 
of 20 simulations each at each MOI were averaged to produce a high-resolution estimate of true 
deviation from the data. These results are plotted as 1/(1 + mean error) to show an intuitive goodness-
of-fit measure, where high values indicate similarity to the data. Figure 4—figure supplement 4 shows 
that the ‘best’ parameter set is at or near a local maximum for goodness-of-fit for eight of ten param-
eters; the effects of the remaining two parameters, cpack and commax, appear to be minimal for this 
parameter set. These results suggest that convergence of the posterior distributions is linked to the 
sensitivity of the model to each parameter, which supports the effectiveness of the ABC algorithm.
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